	Summary (of SIP-adus	s Projec	t (FY	2016))		
Name of the project	Studies of sensing technologies relating to an precision docking control in a next-generation urban transportation system							
Responsible Organization	Advanced Smart Mobility Co.,Ltd.							
Name	(eiji Aoki							
Object of the Project								
The accuracy precision docking system However, there are many disrupting fac	is required in the tors where white l	Advanced Rapid Sysine is covered by ob	stem(ART). A stacles and w	method k hite line i	based on i is missing	route guida due to det	ance has bee erioration.	en consider
Ducie et Commune								
Project Summary								
 Studies of sensing technologies Regarding the sensing technology rela 	ted to the precisic	on docking control of	f the ART bus	, we seard	ched the f	ollowing fi	ve methods	and compa
each result.		Position Detection Method	Sensing (Precision Docking)	Sensing (Approach)	Workability	Robustness (Environment)	Cost (Road,Vehicle)	Evaluation
 High-solar reflective coating material Vehicle-mounted LiDAR 	al	1) High-solar reflective coating material	Δ	ο	Δ	X (Rain)	∆ (Camera)	Δ
3) Magnetic marker and vehicle-moun4) Image recognition	ted sensor	2) Vehicle-mounted LiDAR	O (line stone)	X (Not line stone)	ο	∆ (Hard Rain,Snow)	O (used in common)	Ø
5) Road surface reflection of laser b	m	3) Magnetic marker and vehicle-mounted sensor	Δ	0	Δ	0	Δ	0
		4) Image recognition	Х	Δ	Δ	∆ (Night,Rain)	0	Δ
		5) Road surface reflection of laser beam	х	Х	Δ	X (Rain)	O (used in common)	x

By comparing and considering the above-mentioned five kinds of sensing technologies, it is found that feasibility of the technology 2) and feasibility of the technology 3) are high. Among both the technology 2) and the technology 3), accuracy of the precision docking using the technology 2) is relatively higher and hence, an actual vehicle evaluation is performed using the technology 2).

In the actual vehicle evaluation, at the time of performing an precision docking at a bus stop at a position 40 m ahead, an error from the bus stop with respect to a target distance $(4.0 \pm 2.0 \text{ cm})$ is measured.

As a result, an average precision docking value is 4.7 cm and a maximum error is +2.0 cm so that it is achieved that a target error range of ± 2.0 cm.

Final gap (Door and Line stone) [cm]

Result : Achieved precision docking with an accuracy of ± 2 cm using technology 2) Issue : In the approach to the bus stop such as within the intersection it is necessary to combine different methods.

Future plan

- 1. Major issues of the precision docking using $\ensuremath{\text{LiDAR}}$
 - •Technology : Including the approach part to the bus stop (intersection part and part without curb), it is difficult to the precision docking using LiDAR alone.
 - •Robustness : Insufficient robustness against weather condition(Especially heavy rain, snow, fog, etc.).
 - •Cost : Even in combination with other technologies, the cost is still high.

2. Content to be addressed

- •it is necessary to combine with sensing technology that can be used in approach part to the bus stop such as GPS.
- Consider feasibility of bus stop structure corresponding to final precision docking technology (line stone, landmark object, etc.).