

Driving Intelligence Validation Platform (DIVP®) for AD Safety Assurance

Prof. Hideo Inoue, Kanagawa Institute of Technology

Weather Forecast

AD* safety Assurance

For Validation & Verification Methodology

The Japanese team on AD-safety assurance has a high motivation to progress AD-safety through international corroborations. DIVP is responsible for the virtual validation field.

Initiative status for AD-safety assurance in Japan

International collaborations

VIVID

Further communication · · ·

AD safety

Building a virtual space simulation platform having highly consistent sensor models with real-world phenomena to contribute to the safety assessment of automated driving.

DIVP motivation

- Sensor modeling that is highly consistent with physical phenomena.
- Platform that enables AD-evaluations throughout "scenario creation", "verification of recognition", "validation of vehicle control".
- Enhanced connectivity with existing simulation software.

Real world

Virtual space and Sensor model

DIVP Simulation results

Virtual sensor views on CI expressway & Odaiba AD-FOT area produced by DIVP simulator

Comply with OpenSCENARIO[®], OpenDRIVE[®] and other standards of ASAM. Ensure the connectivity with existing simulation software to provide tool chain.

Contribute to international standardization activities, for example, proposing standard format to ASAM utilizing Japan=German cooperation flamework.

ASAM2): Association for Standardization of Automation and Measuring Systems / OSI3): Open Simulation Interface

DIVP® simulation demonstration of AD virtual validation with sensing weakness scenario package on Odaiba & C1 expressway, is planned thru FOT in the Tokyo Waterfront Area

■ Modelling for Sensing weakness scenario packages

Simulation validation on scenario packages

Sensing Weakness Scenario Packages on Odaiba, C1

Various sensing weakness scenes

[Modeling of Odaiba waterfront area] Reflection characteristics were modeled based on experimental measurements, and detailed Virtual-Community Grand was reproduced.

Modeling based on physical properties

Modeling Reflection Characteristics

Measuring asphalt used locally

DIVP® Sim (usually asphalt)

DIVP® Sim (Thermal shielding painting)In the thermal shielding painting, the retroreflective component tends to become stronger.

DIVP® can evaluate complex traffic environment scenarios in virtual proving ground

Millimeter wave radar simulation example (multipath ghost)

DIVP® simulation able to reproduce the precise multipath due to tunnel walls of the millimeter-wave radar and the ghosting of the vehicle ahead.

We are working on simulation reproduction and safety evaluation based on the sensing weakness conditions observed by AD-URBAN in the Tokyo waterfront area.

Effectiveness verification of autonomous vehicle evaluation using DIVP simulation

Real world; Autonomous Vehicle Systems

Virtual world; Space and Sensor Modeling

Traffic signal recognition in rainy weather; verification of recognition limit performance is possible with virtual space simulation

Contribution to safety assessment for AD-system evaluation using virtual space model

Difficult to catch signal recognition limit conditions in public road due to lack of control over rainfall condition levels

Public road tests	Normal weather	Rainy weather (a few mm/h)
Recognition rate	0.982	0.984

DIVP[®] simulation allows for intense rainfall settings
→ Signal recognition limit verification is possible

Evaluation by extrapolation is possible

DIVP® simulation	Normal weather	Intense rainy weather
Recognition rate	0.989	0.868

The overall recognition rate deteriorated with increasing rainfall in DIVP® simulation.

- Undetected due to shielding by raindrops
 Microsognition due to solar change etc.
- Misrecognition due to color change, etc.

System control robustness for edge case conditions and validation example of performance limit Search sensor using

Localizing Algorithm Robustness Verification using DIVP®

DIVP® simulation provides adverse conditions that the system wants to validate but is difficult to set in reality We were able to verify the high robustness of the self-position estimation algorithm of AD-URBAN (Kanazawa University Proj.).

Reproduce intersection driving scenarios using DIVP simulator based on traffic data from AD vehicles' FOT, and evaluate safety by changing various environmental conditions.

Case study: Reproduction and utilization of trajectory data obtained on public roads at intersection

Structuring coupled physical and functional simulation are needed for AD-safety assuarance. DIVP® focuses on modelling the physical properties of sensing.

Total validation framework for AD-safety assurance

Through VIVID collaboration, DIVP® accelerates its original contributions to global standardization of simulation-based AD safety assurance methodology

Interface standardization AD Safety assurance

Raytracing for each sensors

Measurement technology / Verification technology

→ Consistency verification DB

- Sensing weakness scenario: JT2
- Environmental models with physical library: JT2
- Interface; JT3
- Sensor models with ray tracing:
 - Camera: JT3.1LiDAR: JT3.2Radar: JT3.3
- Sensor measurements & test metrics: JT4.
- Tool chain: JT1

Thank you for your kind attention!

Tokyo Odaiba → Virtual Community Ground

