

Automated Driving Systems for Rural America

Prof. Daniel V. McGehee Director National Advanced Driving Simulator

SIP – adus Workshop - Tokyo November 2021 アイオワ大学 工学部 教授 博士 **ダニエル マクギヒ**

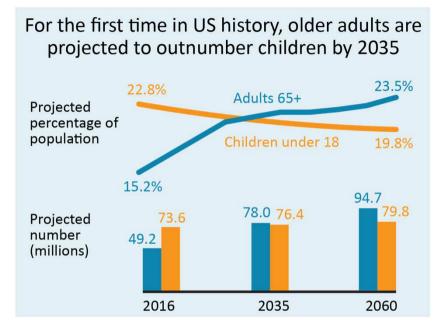
National Advanced Driving Simulator 所長

Rural Roadways are Under-Represented in AV Testing and Demonstrations

Urban-centric AV testing will lead to urban-centric solutions

19 0/0
of Americans live in rural areas, but . . .

50% of traffic fatalities occur on rural roads


US Census Bureau and FHWA Statistics

Mobility-Impaired Populations Need More Options

- 1 in 5 adults over the age of 65 live in rural America
- Older adults are projected to outnumber children by 2035

https://www.census.gov/library/stories/2019/10/older-population-in-rural-america.html

ADS Vehicle

- 2020 Ford Transit 350 HD Chassis
- Buy American Act
- Mobility-friendly vehicle
- Always monitored by safety driver and co-pilot
- Built to support higher levels of automation
- ADA compliant

Accessibility

ADA compliant

Equipment

- 1. GPS antenna
- DSRC antenna
- 3. High-definition cameras (2)
- 4. Velodyne Lidar (on front, sides, and rear of vehicle)
- 5. Webcam video camera (front and rear)
- 6. Mobileye collision avoidance system
- 7. Vaisala mobile detector: road, surface, and weather data
- 8. Long range radar (front and rear)

Video: Safety Driver Display

Route

- → 47-mile loop, driven clockwise
- → 4 stops
 - Iowa City Marketplace
 - Hills Community Center
 - Riverside Casino
 - Kalona Public Library
- → Different road types
 - Marked, unmarked, unpaved
- → Driven all 4 seasons
- → Different times of day
- → Mapped in high-definition
- → Construction along route

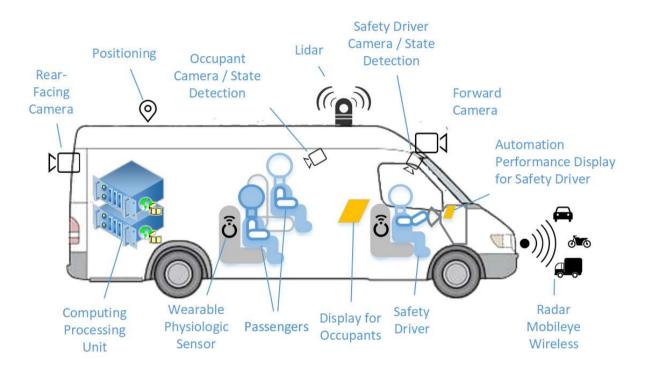
Riders from Local Communities

Older adults

- Age 65 and over
- May have a driver's license with or without restrictions

Mobilityimpaired adults

- Age 25 and over
- Need the aid of a walker, cane, or wheelchair


Visuallyimpaired adults

- Age 25 and over
- Vision between 20/70 20/200

Data to be Collected

- → Video data from driver and passengers
 - Driver performance/workload
 - Driver/passenger state detection
- → Questionnaire data from the riders regarding trust and acceptance
- → Physiological data from riders and safety driver regarding stress/anxiety
- → Automation performance data
 - Impact of environment

Hypothesis: Trust and acceptance will be gained through experience with the AV

Questionnaire Data

Pre- and post-drive:

- Trust
- Reliability
- Anxiety
- Safety
- Intention to use
- Perceived usefulness

I would trust a highly automated vehicle to drive on gravel roads

How concerned are you about an automated vehicle's ability to interact with non-self-driving vehicles?

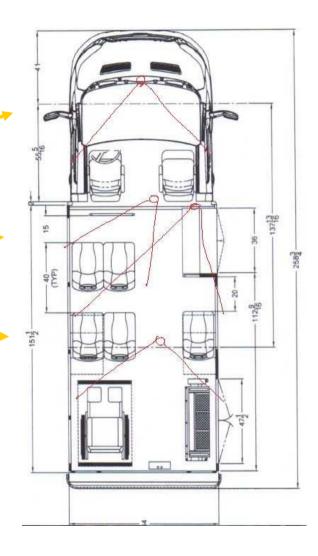
Biometric Data (Empatica)

Baseline data collected pre-drive (10 minutes)

- Data from temperature sensor
- Data from the electrodermal activity sensor
- Blood Volume Pulse (BVP) data from photoplethysmograph
- Data from 3-axis accelerometer sensor.
- Inter-beat interval extracted from the BVP signal
- Average heart rate extracted from the BVP signal

Ratings of Anxiety

- Asked at various points throughout the drive
- A monitor at front of shuttle will continuously display the status of the automation (i.e., manual or automated control)



National Advanced Driving Simulator

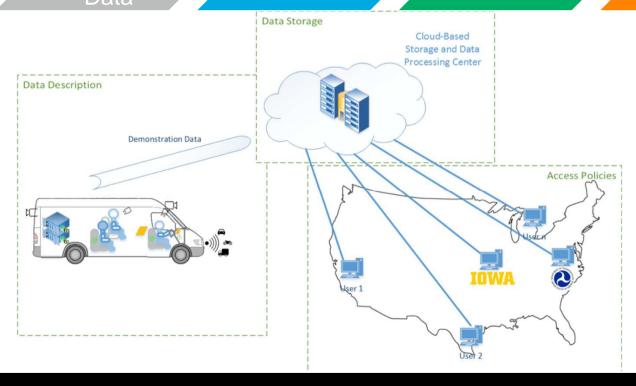
Video Data

- → Forward view
- → Rear view
- → 4 synced video streams
 - Driver and co-pilot face, hands, torso
 - Passenger's face/torso
- → Time-stamped
- → HD resolution (1080P)

Access to raw video data requires data usage agreement

Phase and Automation Focus

Phase	Name / Focus on Automation
1	Controlled Access Divided Highways/Interstate
2	Two-Lane Undivided Highway
3	Connected Vehicles
4	Roads Through Cities and Towns
5	On and Off-Ramps / Wet Weather
6	Unmarked and Snowy Roads
7	Navigating Parking Areas
8	Full Route Under Automation



Data Sharing Approach

Vehicle / ROS Bag Data Indexed Relational Database Data

Cloud

Access Portal Data To Users

Lessons Learned & Issues for Consideration

- AVs are complicated, expensive, and fickle
- Sometimes perceived as "too safe"

- Marketing hype and buzzwords cloud understanding
- Public fear of the unknown

Funding for solutions targeted to solving critical use-cases

Questions from Kitazakisan:

1. What is the most important research question/challenge?

- → Managing the public's expectations about what automation means
 - Automation is greatly overmarketed
 - ODD is critical to discuss in any public forum

Give examples and be clear that home to work or play automation is

decades away

Questions from Kitazakisan:

- 2. What aspects should/can be internationally standardized?
- → Automated driving is largely not an OEM process as before
- → Computer and start-up don't play by the same rules as the OEMs
- → Their work is too proprietary and dynamic (e.g., over air updates) to wait for consensus standards

