13th Japan ITS Promotion Forum

Automated Driving Systems

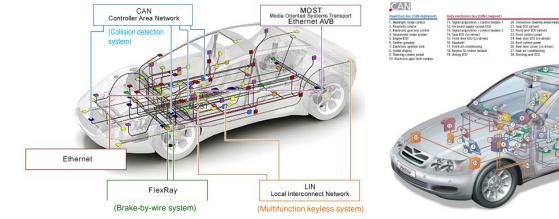
Takashi Imai

SIP-adus International Cooperation Working Group Toyota Info Technology Center Co., Ltd. SIP

INDEX

Industry Trends and SIP-adus Activities

- **1. Vehicle Security Trends**
- 2. Initiatives by Automotive Industry Organizations
- 3. SIP-adus Initiatives



Vehicle Security Trends

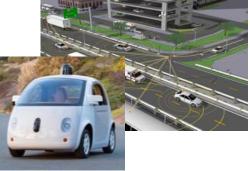
Vehicle Composition

- The car systems consist of many electronic control units (ECU).
- They are linked by several onboard LAN depending on the characteristics and particularities of each application.
- Among them, the CAN (Controller Area Network) protocol is the de facto standard of onboard LAN. It is used to support the various car functions associated with "acceleration, steering, and braking."

https://www.renesas.com/ja-

jp/solutions/automotive/technology/networking.html

Vehicle Advancement

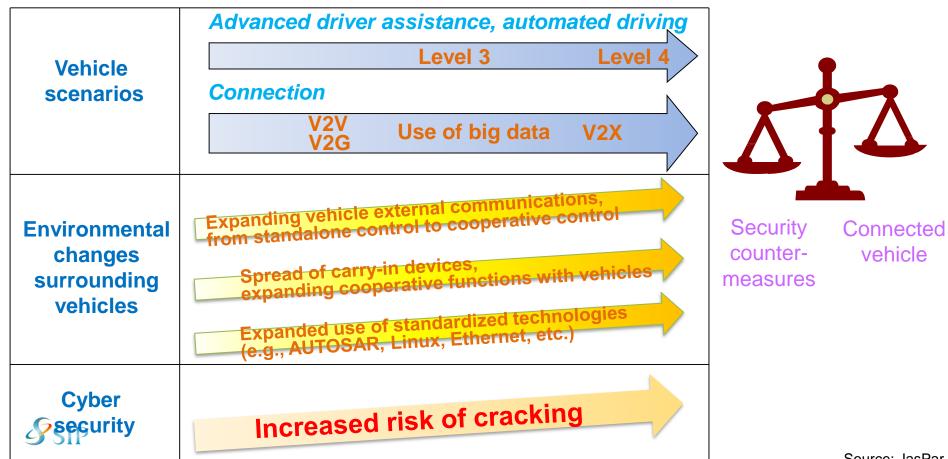

- Development into a vehicle system that provides "safe and comfortable mobility" while supporting the basic functions of "acceleration, steering, and braking"
- Achieved with onboard ECUs (computers) that exchange information

 Detection of obstacles and other items around the carwith various sensors

Support by CAN
 Power steering, etc.
 Mandatory OBD-II

• Support for driver with ADAS (Advanced Driver Assistance System) (collision prevention, etc.)

The ECUs conduct operations based on sensor information.


 An age of "automated driving" and "connected vehicles"

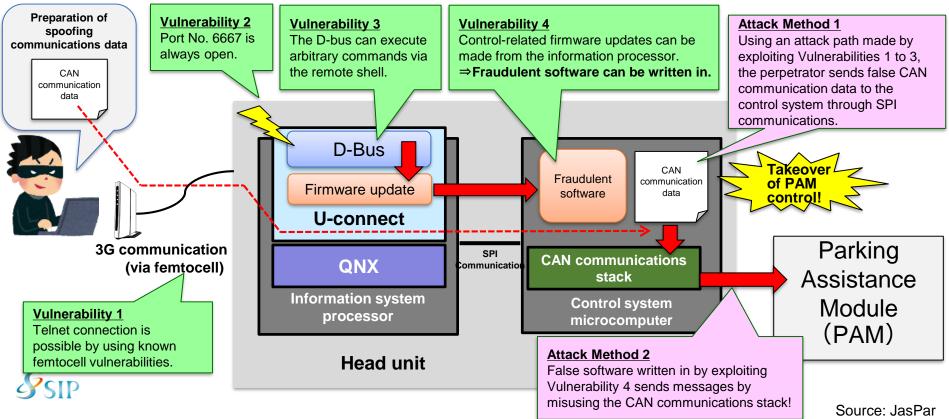
All operations performed by the driver

Vehicle Security Trends

Source: JasPar

Vehicle Security Trends

Targeted vehicle The ability to hack vehicles is growing year by year. Tesla Model X Attack description FCA recall of 1.4 million cars Same as the Model S (Attack striking new vulnerabilities) Targeted vehicle Vehicles equipped with Uconnect (network connection services) Targeted vehicle **Tesla Model S** Attack description* Attack description Control of display, steering, and gear shifting by Control of brake operation in a moving remote control from a PC vehicle by remote control from a PC *No accidents were caused by the remote attack Control of vehicles by remotely '16 attacking numerous vulnerabilities **Control of vehicle using maintenance mode** (when driving) *Injection of communication through diagnostic connector '15 **Targeted** vehicle A ann Source: PER KYA DAILY FCA Jeep Successful remote hacking Attack description (during low-speed driving) 13 Injection of maintenance command from **Conducted by boarding the vehicle** diagnostic connector (communication injection) Control of steering by spoofing regular


*Attack made by analyzing communications beforehand

Source: JasPar

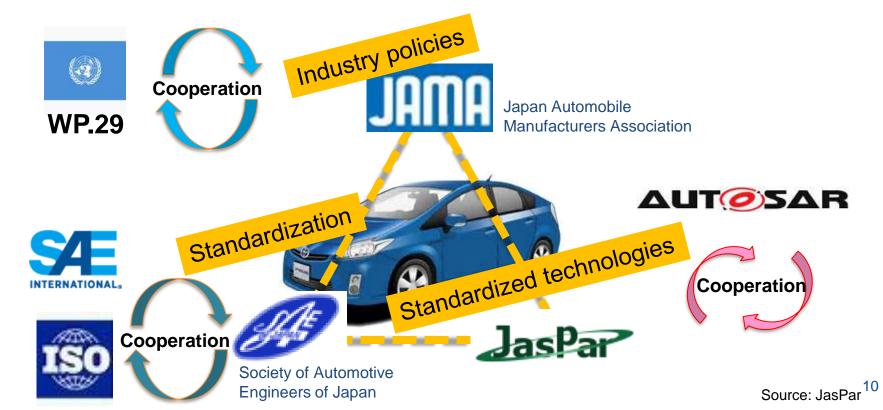
ECU

How Was Vehicle Control Taken Over?

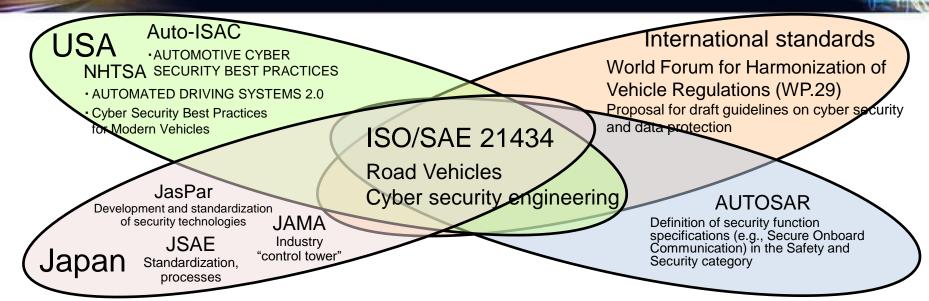
 The perpetrators opened an attack path by exploiting several vulnerabilities in the head unit, sent a false message to the CAN bus, and took control of the PAM.

Initiatives by Automotive Industry Organizations

Difficulties in cyber security for vehicles


- 1. Unlike the IT industry, auto manufacturers also handle customer safety.
- As opposed to "functional safety" (random accidents), how should "cyber security" (malicious intent) be viewed?
- 3. Cars have a long life cycle.

Issues pertaining to the cyber security of vehicles are an area of cooperation, rather than an area of competition. Active cooperation among OEMs and industrial organizations will continue.



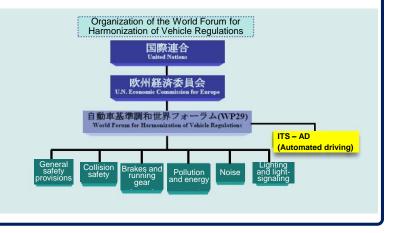
Initiatives by Industry Organizations

Organizational roles are generally as follows:
 Planning: JAMA Requirements: JSAE Design: JasPar Operation: JAMA

Developments in Security-Related Standardization/Legislation

Organization name Outline of activities

NHTSA	Formulation of regulations and guidelines for self-driving cars (including security requirements)
Auto-ISAC	Central organization for sharing information on incidents/vulnerabilities in the automobile industry
ISO/SAE 21434	Formulation of vehicle security standards through the Joint Working Group of ISO (Europe) and SAE (USA)
WP.29	Security and data protection guidelines for self-driving cars and connected cars
AUTOSAR	Formulation of security function requirements as an electronic platform specification


Source: JasPar

Developments in Security-Related Standardization/Legislation

WP.29: Cyber security and data protection

- <u>Self-driving cars</u> Cyber security guidelines
- Demand for "driver warnings" and "safe vehicle control" whenever a "cyber attack from outside" is detected
- Also, demand for "protection from leaks and fraudulent use of personal information (privacy)"

ISO/SAE 21434: Road Vehicles – Cyber security engineering

- ISO proposal concerning cyber security development processes for automobiles
- Being discussed in the ISO and SAE Joint Working Group (the world's first)
- Scheduled to be issued in 2020

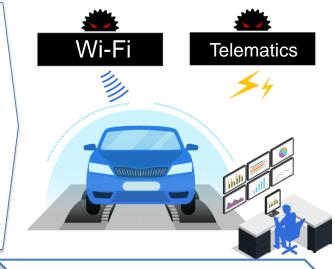
12

SIP-adus Initiatives

Objective and Overview of SIP-adus Security Measures

Objective: Establishment of guidelines for evaluating the cyber security defense performance of vehicles

(2) Formulation of security

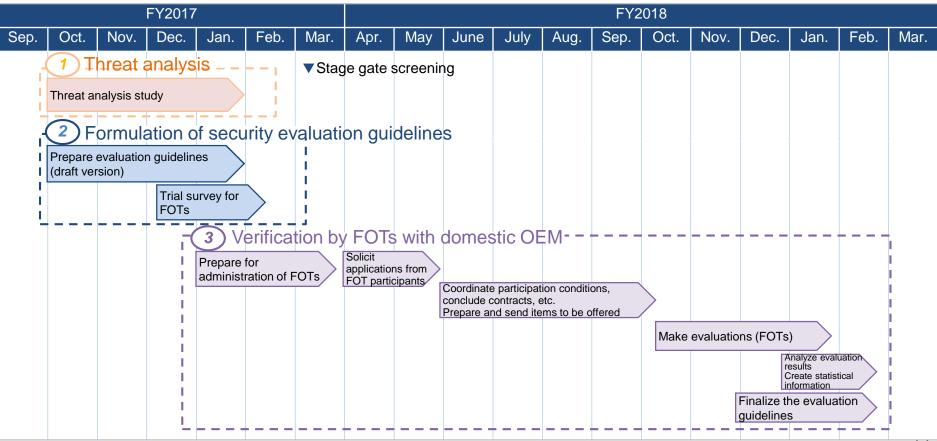

evaluation guidelines

(1) Threat analysis

- Investigation of system configurations, such as automated driving demonstrations conducted in the world
- Investigation of known vulnerabilities and incidents
- Risk/Impact analysis

(3) Verification by FOTs with domestic OEM

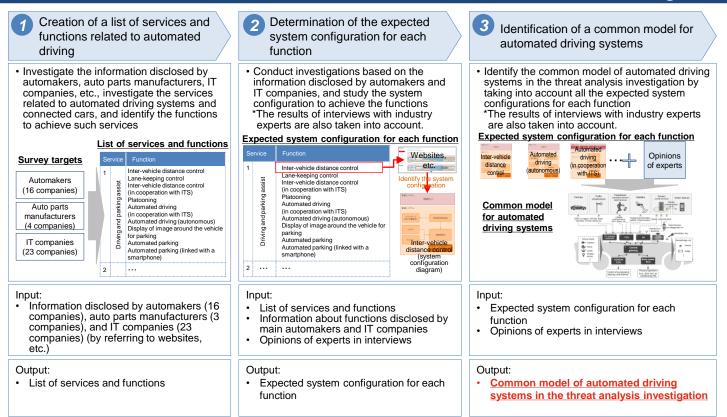
Guidelines were <u>competitively</u> formulated by each of three leading security vendors.


(1) Deloitte Tohmatsu Risk Services, (2) Nihon Synopsys,(3) PwC Consulting & Cyber Defense Institute

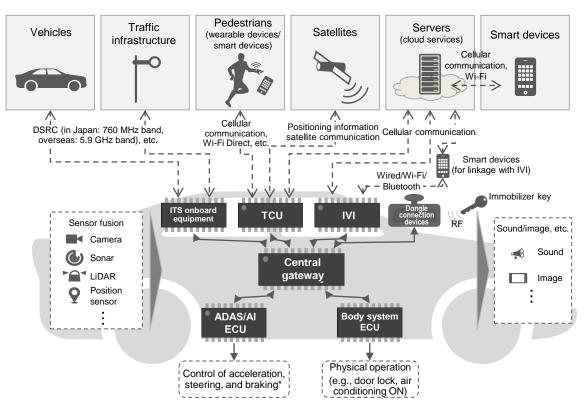
The best guidelines were selected and proven.

PwC Consulting & Cyber Defense Institute

Overall Schedule



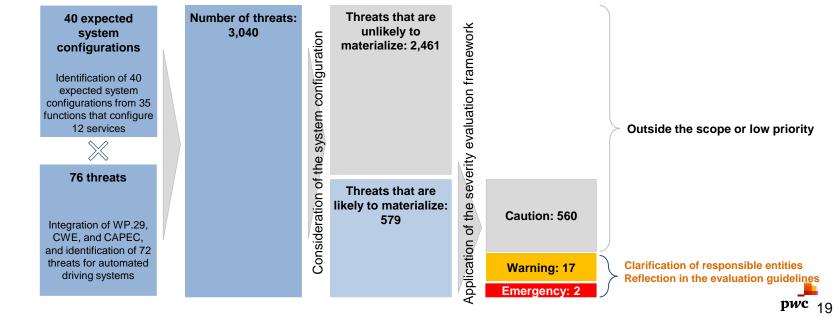
SIP-adus Initiatives Threat analysis study


Objective of Threat Analysis and Implementation Approach

Objective: Identify overall threats including attacks from outside of vehicles such as V2X related to automated driving

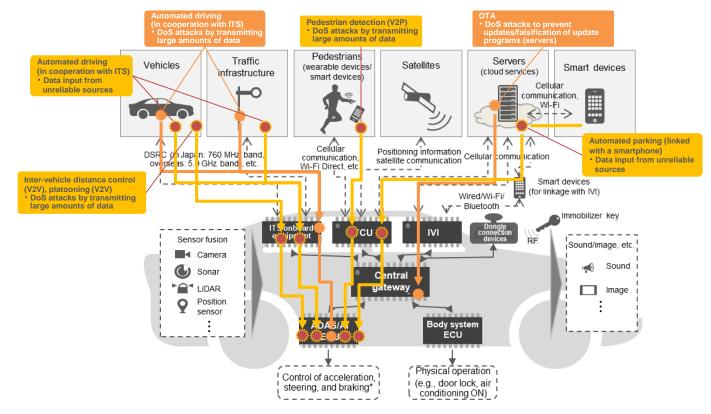
DWC

SIF



pwc

Overview of the Results of Threat Analysis (1)

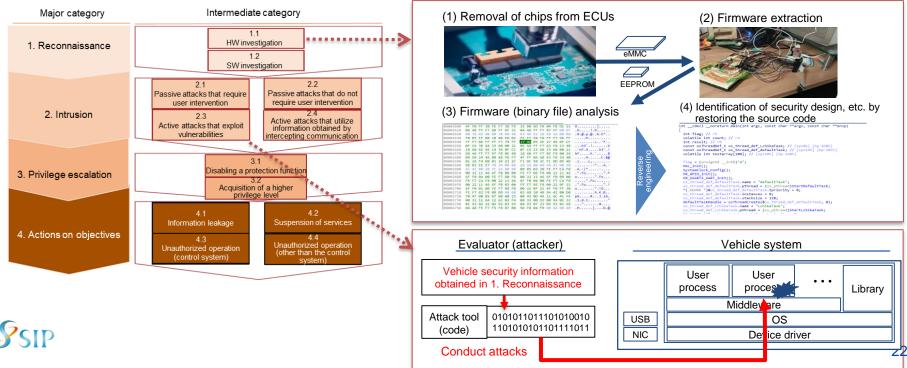

- Identify threats that may materialize based on all the system configurations related to automated driving systems, apply a severity evaluation framework, and thereby identify threats that should be addressed with priority.
- Clarify the entities responsible for taking countermeasures against identified threats, and reflect threats that require countermeasures on the vehicle side in the evaluation guidelines.

Overview of the Results of Threat Analysis (2)

- An

Illustration of the common model for serious threats

SIP-adus Initiatives Formulation of security evaluation guidelines


Overview of the Guidelines

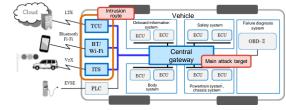
AR

Conduct various cyber attacks to check that the security design information, etc. which is used as a foothold for intrusion into a vehicle is not stolen or that unauthorized operation does not occur due to attacks

Evaluation items

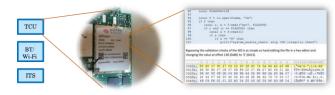
Example of evaluation contents

Scope and Characteristics of the Guidelines


A

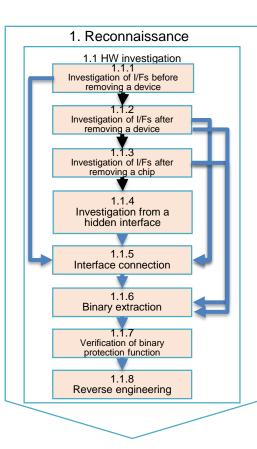
<u>Scope</u>

 A policy was established to create guidelines that can be used in the overall evaluation, etc. in the Vshaped model of the vehicle development based on the results of discussions with stakeholders (e.g., vehicle OEMs, JasPar) and threat analysis.


Characteristics

 Evaluation by intrusion tests from I/F outside of vehicles from the viewpoint of real hackers (attackers)

2. The evaluation targets also include HW security countermeasures that take into account the actual attacks on vehicles.


Source of Information for Guidelines (Vehicle Incidents)

The guidelines were established by profiling actual vehicle incidents in the past and incorporating techniques for reproducing them, thus helping to prevent similar vehicle incidents.

		_
	Incident overview	
Vulnerability of Jeep Cherokee's Uconnect	The vehicle position is identified and the vehicle is controlled remotely by a third party. An attacker intrudes into the onboard equipment through an open port on the cellular network and falsifies the firmware of the CAN controller to enable the vehicle to be remotely controlled.	be
Vulnerability of BMW's ConnectedDrive	A vehicle may be remotely controlled by a third party. The doors can be unlocked by sending a door unlock command to a vehicl from a telematics server prepared by the researchers.	е
Vulnerability of Tesla Model S wireless LAN	A vehicle is remotely controlled by a third party. The researchers proposed a method of directing the user to an attack site using fake Wi-Fi spot. Attacks through the cellular network are also possible. In this case, a decoy email, etc. is used to direct the user an attack site.	
Vulnerability of Mitsubishi Outlander's mobile app	The environment settings (e.g., air conditioning settings) are remotely controlled by a third party. The security device settings an air conditioning operation can be remotely controlled by accessing a Wi-Fi spot in the cabin.	d
Vulnerability of NissanConnect EV	The development settings, which are not used by general users, remain in the system. Classified information (e.g., user ID, password) can be leaked by using these settings.	
Vulnerability of Nissan Leaf	The authentication system is inappropriate. The authentication mechanism is not implemented in the smartphone ⇔ server API. Other vehicles can be controlled if the last five digits of the VIN are found. * This is a vulnerability of the smartphone app. A check will be conducted to see if similar events occur between a vehicle and a server or between a vehicle and a smartphone.	
Vulnerability of Subaru's STARLINK	No expiration time is set for the security tokens which are used to authenticate smartphone devices. If security tokens are stolen the doors could be unlocked by a third party. * This is a vulnerability of the smartphone app. A check will be conducted to see if similar events occur between a vehicle and a server or between a vehicle and a smartphone.	1,
Vulnerability of Continental AG's TCU	A TCU can be remotely controlled by a third party.	
Vulnerability of Mazda Connect	An arbitrary code is executed from an onboard USB port. The vulnerability was used for AVN customization. * This is a local attack, but was included as an issue to evaluate resistance against reverse engineering.	
Vulnerability of Honda Connect	An arbitrary code is executed from an onboard USB port. The vulnerability was used for AVN customization. * This is a local attack, but was included as an issue to evaluate resistance against reverse engineering.	рw

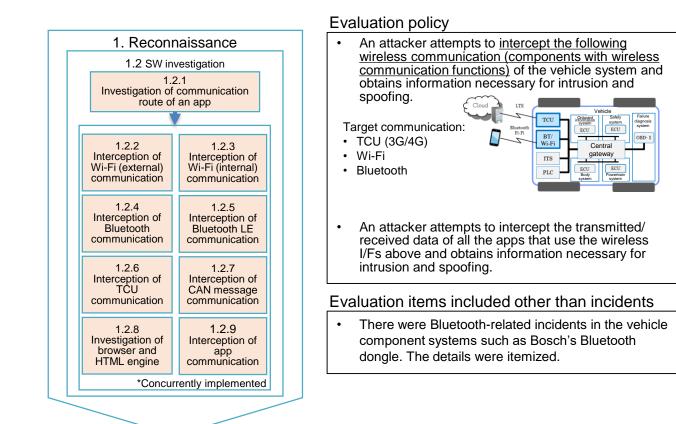
1. Reconnaissance/1.1 HW investigation

Evaluation policy

An attacker attempts to extract data from all the I/Fs used by the vehicle HW (vehicle, devices, chips) for data input/output. When data extraction is successful, the binary file is reversed to analyze the system. Connection ports that are externally exposed 1.1.1 Target I/Fs: RJ45, USB, RS-232C, etc. R145 USB RS-232C Debug port 1.1.2 Target I/Fs: Through hole whose usage nknown Debug port (e.g., JTAG), EEPROM UART. unknown through hole RS-232 Debug port, UART 1.1.3 Target I/Fs: Debug port, UART (pin), SPI, I2C port, etc. MMC I/F, SPI, I2C port, etc. MMC interface Ardute

Evaluation items included other than incidents

- Techniques for extracting data from I/Fs, other than the data input/output I/Fs, in binary extraction were itemized.
 - e.g. Extraction by reversing the register bits using laser radiation


Extraction by scanning a semiconductor circuit using a microscope

Data extraction from secure elements and analysis

25

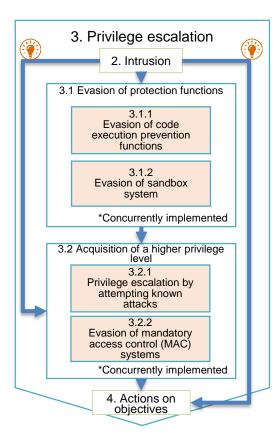
1. Reconnaissance/1.2 SW investigation

2. Intrusion

2. Intrusion			
2.1 Passive attacks that	require user intervention		
2.1.1 Drive-by download attacks	2.1.2 File attachment attacks		
2.2 Passive attacks th interve			
2.2.1 Attacks using automatic connection to external Wi-Fi	2.2.2 Attacks that direct the user to a fake server		
2.2.3 Attacks that exploit residual development functions			
2.3 Active attacks that	exploit vulnerabilities		
2.3.1 Attacks via Bluetooth	2.3.2 Attacks via Bluetooth LE		
2.3.3 Attacks via a TCU	2.3.4 Attacks via Wi-Fi (in-car)		
2.4 Active attacks that utilize information obtained by intercepting communication			
2.4.12.4.2Spoofing attacksReplay attacks			
*Concurrently implemented			

Evaluation policy

- An attacker attempts attacks via wireless I/Fs until a system console becomes available (intrusion).
- The attack patterns were classified based on the "vehicle NW access condition" and "occupant involvement" that affect the method of attacks.


Occupant involvement NW access	Attacks that require the occupant's intervention (tricking a user)	Automated attacks that do not require the occupant's intervention (tricking a device)
No direct connection to a vehicle from the external NW (external response only)	Attacks that depend on the occupant's operation to start execution of an attack program Evaluation item 2.1	Change the target that is automatically accessed by the system based on the intention of an attacker <u>Evaluation item 2.2</u>
Direct access to a vehicle is possible from the external NW	(N/A)	Attacks that exploit vulnerabilities of various I/Fs (Evaluation item 2.3) Attacks that use information derived from intercepted communication (Evaluation item 2.4)

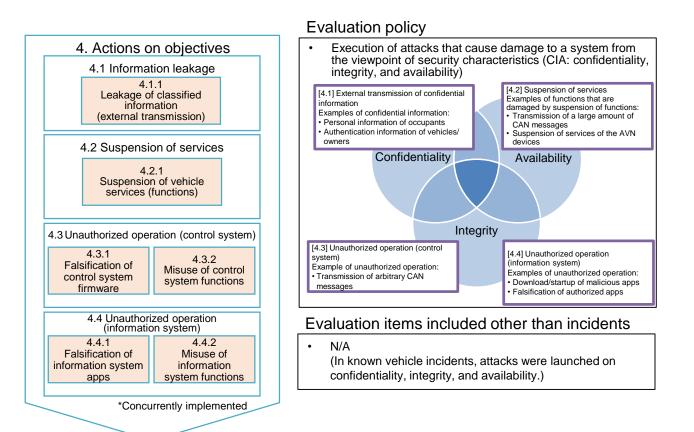
Evaluation items included other than incidents

- There were Bluetooth-related incidents in the vehicle component systems such as Bosch's Bluetooth dongle. The details were itemized.
- It was judged that advanced persistent threats should be considered because there are many attacks on IT security and significant damage is caused. Thus, the file attachment attacks and attacks that direct the user to a fake server were itemized.

3. Privilege escalation

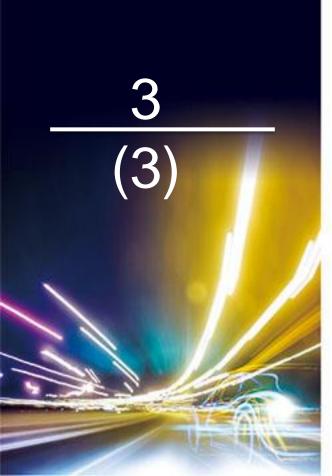
Evaluation policy

- An attacker attempts measures to evade the applicable cause depending on the error status when arbitrary code execution fails.
- The status and cause of failure of arbitrary code execution are as follows.


Status of failure	Evaluation items	Cause of failure	Example of defense system
Cannot be executed		No code in the intended position	ASLR
		Located in a segment where code execution is prohibited	DEP, Nxbit
Denied access to an attack target	3.1.2	Code execution in a controlled area	Sandbox
Suspension of execution	3.2.1	Lack of execution authority	General access control
	3.2.2	Suspension by mandatory access control	SELinux

Evaluation items included other than incidents

 Considering the jailbreaking of IoT products (smart devices in particular), the problems were itemized because similar problems are likely to occur in vehicle security in the future.



4. Actions on objectives

SIP

SIP-adus Initiatives Verification of the guidelines through FOTs with OEMs in Japan

Verification of the Guidelines through FOTs with OEMs in Japan

Objective: Apply the formulated guidelines to actual systems for verification and improvement

Check the importance of evaluations on actual systems through FOTs

In FY2017, an FOT was conducted (on a trial basis) with the participation of one OEM in Japan.

In FY2018, an FOT was conducted with the <u>participation of four OEMs</u> in Japan.

The information security evaluation guidelines were finalized based on verification and improvement through FOTs.

Results

Number of

participating

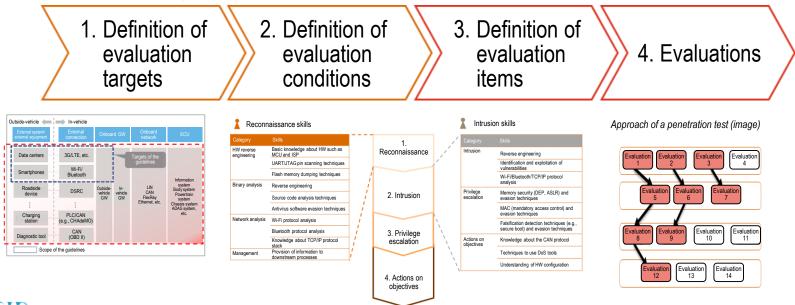
OEMs

FOT results reported

- (1) Evaluation of the content/items of FOTs by participants
- (2) Establishment of the evaluation process through FOTs
- (3) Improvement of the evaluation guidelines through FOTs

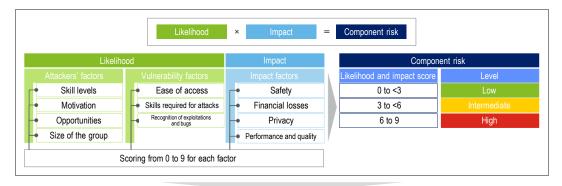
Result (1) Evaluation of the Content of FOTs by Participating Companies

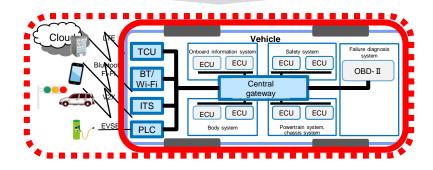
Evaluation item	Content	
Establishment of evaluation techniques (formulation of evaluation guidelines)	 Techniques that help ensure a certain level of security quality Techniques that help improve the uniformity of penetration tests that are highly dependent on personal skills 	
FOTs using vehicles systems	 Activities that contribute to verifying the validity of the evaluation guidelines Verification using multiple vehicles is preferred. 	
Future initiatives	 The studies on countermeasures against identified problems, etc. are still dependent on evaluators. There is room for improvement. Guidelines should be available not only in the overall evaluation in the latter half of the V-shaped development model but also in the upstream processes such as design. 	



Result (2) Establishment of the Evaluation Process

Define the standard evaluation process for vehicle system security evaluation (penetration test) through FOTs and establish a technique that can be used for assessment.


Defined evaluation process



Process 1. Selection of Evaluation Targets

Analyze the risks of the overall vehicle system and peripheral systems, identify I/Fs and components whose risks of attacks are high, and select and define evaluation targets based on this technique

Process 2. Definition of Evaluation Conditions

Evaluation conditions	Details of the conditions
Evaluators' skills	 Define the skills required for evaluation, and conduct a check by evaluators/ administrators in advance
Man-hours for evaluation	 (In this FOT) Assign two persons for the standard evaluation period of two months in total (40 business days), and make evaluations using the man-hours
Evaluation environment (vehicles)	Check the feasible evaluation environment based on the actually available equipment

Evaluation results

Evaluation criteria	Reconnaissance phase: Evaluations were made by evaluators with the skills above for the specified period. Reconnaissance was unsuccessful. The safety of the target and the grounds for safety were confirmed. Intrusion phase: Evaluations were made by evaluators with the skills above for the specified period. Intrusion was unsuccessful via all the I/Fs.
---------------------	--

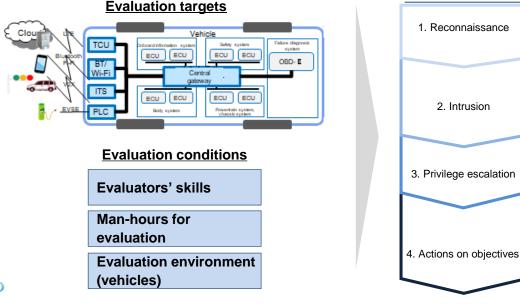
pwc

[Reference] Overview of "Evaluators' Skills"

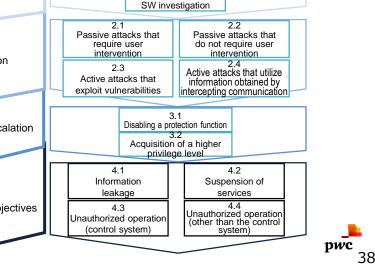
Reconnaissance skills

Category	Skills	Overview
	Surface analysis	Analyze the configuration of a printed wiring board based on the knowledge about hardware, and search/identify debugging ports and external communication ports
HW analysis	Processing	Delaminate and re-solder a flash memory, etc. soldered on a printed wiring board, and process a printed wiring board as necessary
	Binary extraction from data I/O ports	Extract and write data from a flash memory delaminated from a printed wiring board using tools, etc. or from an external communication port
	Binary extraction from debugging ports	Extract data from the identified debugging ports above
	File system analysis	Analyze data extracted from a flash memory, and analyze and identify the data structure of the file system, etc.
	Software architecture analysis	Analyze a group of files extracted from the file system, and analyze and identify software architecture such as the OS and library
Binary analysis	Binary code analysis	Analyze respective identified files such as program files, and analyze and identify their design and implementation
	Source code analysis	Decompile binary codes using various tools, and analyze and identify their design and implementation at the source code level
	Evasion of protection functions	Analyze and evade protection functions implemented in software such as data encryption, obfuscation, and encoding
	Analysis of Wi-Fi communication	Intercept and analyze Wi-Fi communication
Network analysis	Analysis of Bluetooth/Bluetooth LE communication	Intercept and analyze Bluetooth and Bluetooth LE communication
	Analysis of cellular communication	Intercept and analyze cellular communication
	Analysis of TCP/IP communication	Intercept and analyze TCP/IP communication
Management	Provision of information to downstream processes	Manage the information analyzed and identified in the reconnaissance process above, and provide such information to the downstream phase/ensure linkage

[Reference] Overview of "Evaluators' Skills"


Intrusion skills

Category	Skills	Overview
	Threat analysis	Analyze and identify an attack surface which is considered as the starting point of intrusion based on the results of the reconnaissance phase
Intrusion	Binary code analysis	Analyze respective files such as program files that serve as an attack surface based on the threat analysis results, and analyze and identify their design and implementation
	Identification and exploitation of vulnerabilities	Identify vulnerabilities that are available for intrusion concurrently with the binary code analysis or based on the results of binary code analysis, and exploit such vulnerabilities by creating attack codes, etc.
	Evasion of vulnerability mitigation technologies	Analyze and evade vulnerability mitigation technologies such as data execution prevention and address space layout randomization
Privilege	Evasion of safety measures	Analyze and evade safety measures specific to a product (e.g., restriction on operation conditions, throttling)
escalation	Evasion of mandatory access control systems	Analyze and evade mandatory access control systems such as SELinux
	Evasion of falsification detection systems	Analyze and evade falsification detection and integrity verification systems such as secure boot
	Analysis of onboard network	Analyze and identify the overall configuration of the onboard network (e.g., layout of the central gateway and various ECUs)
Actions on objectives	Analysis of CAN communication	Intercept, analyze, and retransmit CAN communication based on the results of network analysis
	Verification and reproduction of attacks	Verify and reproduce attacks that exploit vulnerabilities based on the results of the reconnaissance and intrusion processes above


рис 37

Process 3. Definition of Evaluation Items

Select evaluation items that should be conducted from the (existing) security evaluation items and determine the sequence of these items based on the results of risk evaluation and condition check.

Items of evaluation guidelines

1.1 HW investigation

1.2

Process 4. Evaluations

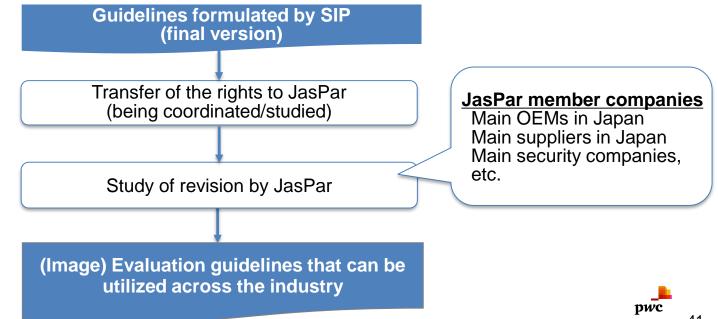
Make evaluations based on the defined evaluation items. Organize evaluations in consideration of the characteristics of the penetration test, and specify items that should be indicated in the evaluation results.

Flow chart for conducting a penetration test

Preliminary preparation	Evaluation	Report of results
 Prepare necessary security tools adequate for the target equipment and evaluation items Fix the specific evaluation organization and members 	 Determine and fulfill the roles in the evaluation organization: Evaluation leader Formulate and determine an intrusion strategy based on the evaluation status Evaluators Make evaluations based on the leader's policy 	 Report the following items in the results report: Overview of an attempt for evaluation (including the flow in the event of an intrusion failure) Evaluation procedure, tools used, program (A client must be able to reproduce and check these items.) Proposals for countermeasures (methods of fixing problems identified)

Result (3) Improvement of Guidelines through Implementation of FOTs

It is currently planned to make improvements for 19 evaluation items in the FOT of this fiscal year.


*Items in the boxes with thick lines are particularly important for evaluation.

	Item number in the guidelines	Details	Reason
1.1.1 Investigation of I/Fs before removing a device		Evaluation item updated: "1.1.1.1 Check of USB port connection"	Review of the details by evaluators based on the evaluation results
		Evaluation item added: "1.1.1.4 Check of an SD card"	Review of the details by evaluators based on the evaluation results
	1.1.3 Investigation of I/Fs after removing a chip	Evaluation content updated: "1.1.3.2 Investigation of a flash memory chip"	Description updated by the evaluators
	1.1.5 Interface connection	Evaluation content updated: "1.1.5.5 Acquisition of console by binary falsification"	Description updated by the evaluators
	1.1.6 Binary extraction	Evaluation content updated: "1.1.6.1 Binary extraction from UART (with the OS started)"	Description updated by the evaluators
		Evaluation content updated: "1.1.6.3 Binary extraction from UART (with the bootloader started)"	Description updated by the evaluators
		Evaluation content updated: "1.1.6.5 Binary extraction from a flash memory"	Description updated by the evaluators
	1.1.7 Verification of binary protection function	Evaluation item added: "1.1.7.8 Investigation of obfuscation"	Feedback from the FOT reflected
	1.1.8 Reverse engineering	Evaluation item added: "1.1.8.2 Selection of targets"	Feedback from the FOT reflected
	1.2.6 Interception of TCU communication	Evaluation item updated: "1.2.6.1 Investigation of modems"	Review of the details by evaluators based on the evaluation results
		Evaluation item added: "1.2.6.2 Interception of TCU-IVI communication"	Review of the details by evaluators based on the evaluation results
	1.2.8 Interception of CAN message communication	Evaluation technique updated: "1.2.8.1 Installation of CAN message capture tools"	Description updated by the evaluators
	2.3.4 Attacks via Wi-Fi (in-car)	Evaluation technique updated: "2.3.4.1 Log in from a public port"	Description updated by the evaluators
		Evaluation technique updated: "2.3.4.3 Analysis of the API source code"	Description updated by the evaluators
	3.1.2 Evasion of discretionary access control (DAC)	Evaluation technique updated: "3.1.2.2 Evasion of check of arbitrary access control"	Review of the details by evaluators based on the evaluation results
	3.1.3 Evasion of safety functions	Intermediate evaluation category added	Review of the details by evaluators based on the evaluation results
	3.2.1 Evasion of functions to prevent privilege	Evaluation technique updated: "3.2.1.1 Check of privilege escalation prevention functions"	Review of the details by evaluators based on the evaluation results
	escalation	Evaluation technique updated: "3.2.2.2 Evasion of mandatory access control"	Review of the details by evaluators based on the evaluation results
	3.3.1 Evasion of secure boot	Intermediate evaluation category added	Review of the details by evaluators based on the evaluation results

40

Future Initiatives to Utilize the Guidelines

At the closing of SIP-adus (1st Phase), the rights of the guidelines will be transferred to JasPar, an organization that formulates the technology standards for vehicle security, for utilization and future management of the guidelines in the auto industry. Discussions have been held to spread the use of the guidelines.

Thank you