

The second phase of SIP- Automated Driving for Universal Services/ Research on New Cyber-attacks and Countermeasures Against New Cyber-Attacks J

FY2021 Interim Report Summary version

PwC Consulting LLC

2022 Mar.

New cyber-attacks against vehicles have been continuously reported at BlackHat and other international conferences. The intrusion detection system (hereinafter referred to as "IDS") is regarded as an effective countermeasure against such cyber-attacks.

In FY2019, a research was conducted on technological trend and basic assessment of vehicle IDS to confirm its necessity and effectiveness in countering new cyber-attacks. Moreover, it was confirmed that there is a need for a comprehensive method to evaluate the detection performance as well as the implementation and operation of IDS.

From FY2020 onwards, following researches are conducted; <u>a. Development of IDS evaluation method and guideline</u> <u>b. Research on connected car threat intelligence and initial response support</u>

Research Objectives and Activities Overview (a, b)

٠

Objectives overview set by SIP

a **"Development of IDS Evaluation** Method and Guideline"

Summarize evaluation items, methods, procedures, and environments for invehicle IDS evaluation methods, examine evaluation criteria and document as a guideline. Transfer the guideline to related industry groups to relate to the practical development and operation of these guidelines to the automotive industry.

"Research on connected car threat intelligence and initial response support"

Consider the method of collecting and accumulating threat intelligence, conduct demonstration tests of attack monitoring using honeypots, develop basic specifications of systems for initial response support, and transfer to relevant industry groups to support collaborative development in the automotive industry.

Project objectives

- The final goal is to transfer the IDS evaluation method guideline to industry groups at the end of FY2021.
- By the end of 2021, component investigations of basic functions of various IDSs and experiments using test beds and actual vehicles, or actual vehicles benches will be conducted, and the outcomes will be used as inputs to the document.
- In FY2020, the information such as latest cyber-attack cases which are necessary for the experiment will be collected and the contents of the experiment will be studied to create the outline of the guide.
- Based on the activities of FY2019, hearings and coordination with industry stakeholders will be conducted as appropriate, enabling practical development and smooth transfer of operations to industry organizations.
- The ultimate goal is to transfer the operation of the basic system specifications to provide initial support for incident response to industry groups in 2023.
- In initial support for incident response, assuming that sharing of threat information within the industry through the "Information Sharing System" is useful, the basic specifications for collecting and accumulating threat information and initial support using them will be formulated by the end of fiscal 2021.
- The basic specifications of the entire system are examined when these elements are operated as a system.

Overall Schedule

Overall schedule of the project is as follows.

	FY2020			FY2021			FY2022				
	8-9	10-12	1-3	4-6	7-9	10-12	1-3	4-6	7-9	10-12	1-3
a. Development of IDS Evaluation Method and Guideline	from detect a2. Examin based on s		very aluation vie s vation of ba nplementati	vpoint sic test item on method a4. Va by act a5. Cr guidel	lidity evalu ual vehicle eating a dr ines	nation of test bench test aft of the eve		ment			
b. Research on connected car threat intelligence and initial response support		research nation of mo and accumu	llating info b3. Exami	mation tation of ba ulating info	ormation	ations for ga	cations	of the entining with sta	re system	sic specifica Practic develo	cal

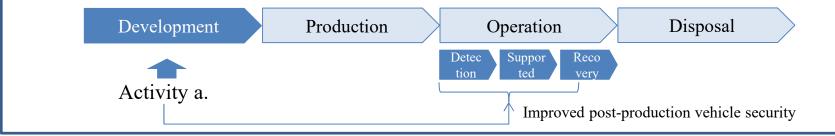
This report describes the activities that were carried out in FY2021 (the red frame period in the above figure). Changes may occur depending on future coordination with industry groups. For the final content, please see the final report for the next year.

Research Objectives (Repeat)

The guideline for the evaluation method of in-vehicle IDS, including judgment criteria, will be formulated, and operation will be transferred to the industry organizations in 2022.

#	Objectives overview set by SIP	Project objectives
a	"Development of IDS Evaluation Method and Guideline" Summarize evaluation items, methods, procedures, and environments for in-vehicle IDS evaluation methods, examine evaluation criteria and document as a guideline. Transfer the guideline to related industry groups to relate to the practical development and operation of these guidelines to the automotive industry.	 The final goal is to transfer the IDS evaluation method guideline to industry groups at the end of FY2021. By the end of 2021, component investigations of basic functions of various IDSs and experiments using test beds and actual vehicles, or actual vehicles benches will be conducted, and the outcomes will be used as inputs to the document. In FY2020, the information such as latest cyberattack cases which are necessary for the experiment will be collected and the contents of the experiment will be studied to create the outline of the guide. Based on the activities of FY2019, hearings and accordination with industry stalkabeldare will be.

coordination with industry stakeholders will be conducted as appropriate, enabling practical development and smooth transfer of operations to industry organizations.


Purpose of the IDS evaluation guideline

Conduct research on evaluation method for on-board IDS and develop IDS evaluation guideline which can be used during product development to contributes to the entire automotive industry in improving after production vehicle security.

Background related to post-production cybersecurity					
Regulations	Industry Practices				
WP29 UN-R155 sets requirements for the manufacturers to enable the vehicles to detect and respond to cyber-attacks.	Each manufacturer should specify the scope of attack to be detected as there are no existing regulations nor guidelines in this regard.				

Activity a. Objectives and directions

Research IDS evaluation method for "Cyber-attack detection and vehicle recovery" and document as a "IDS evaluation guideline" to contribute to the improved cybersecurity for <u>automotive</u> <u>industry</u>.

Activity Policy: Scope of the IDS evaluation guidelines

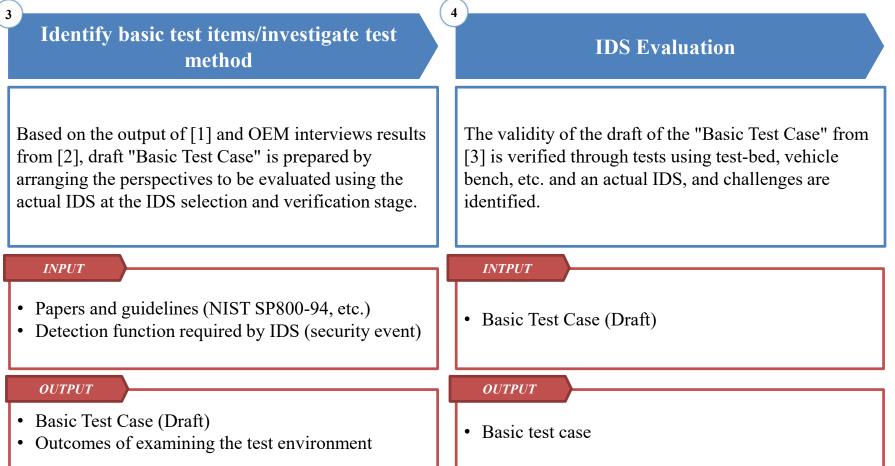
As a precondition, the content of the Guideline is a requirement and assessment perspective to be considered by OEMs/ suppliers, and does not imply that the requirements listed in the Guideline must be met, and that testing must be done in the way of the Guideline.

Policy 1	Evaluate the outline at a level of detail that is comprehensive and comparable to IDS	
Policy 2	Evaluate whether or not a hypothetical attack equivalent to that of a past attack can be detected and analyzed	
Policy 3	Perform IDS actual machine tests in a test environment that can be easily prepared	

Activity Policy: IDS Evaluation Guideline Development

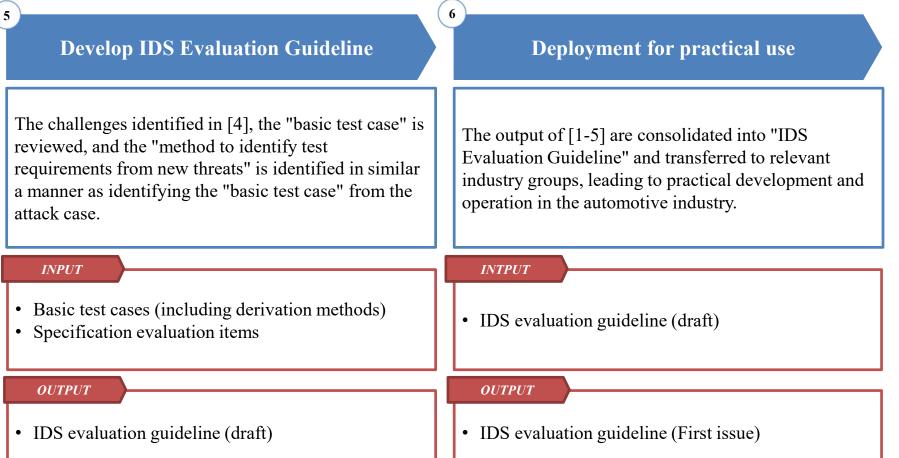
Following approach will be taken to develop IDS evaluation guidelines and transfer to the industry groups.

1 Investigate Basic IDS functionality	Investigate open source information on the latest attack cases against the vehicle, and investigate and arrange the elements to be detected by the in-vehicle IDS.
2 Investigate evaluation perspectives based on the specifications	Summarize IDS evaluation perspectives as "Specification evaluation items". The output is validated/reviewed through interviews with OEMs and IDS vendors.
3 Identify basic test items/investigate method	Based on the output of [1] and OEM interviews results from [2], draft "Basic Test Case" is prepared by arranging the perspectives to be evaluated using the actual IDS at the IDS selection and verification stage.
4 IDS Evaluation	The validity of the draft of the "Basic Test Case" from [3] is verified through tests using test-bed, vehicle bench, etc. and an actual IDS, and challenges are identified.
5 Develop IDS Evaluation Guideline	The challenges identified in [4], the "basic test case" is reviewed, and the "method to identify test requirements from new threats" is identified in similar a manner as identifying the "basic test case" from the attack case.
6 Deployment for practical use	The output of [1-5] are consolidated into "IDS Evaluation Guideline" and transferred to relevant industry groups, leading to practical development and operation in the automotive industry.

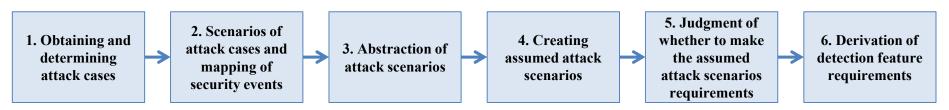

Activity a. Approach (1/3)

Develop drafts of "Specification evaluation items" and "Basic test cases" based on attack information and papers on past cars, public information survey on IDS products, etc. and conduct interviews with OEMs and IDS vendors, and conduct IDS actual machine surveys to verify the validity.

1 Identify basic test items/investigate test method	2 Investigate evaluation perspectives based on the specifications
Investigate open source information on the latest attack cases against the vehicle, and investigate and arrange the elements to be detected by the in-vehicle IDS.	Summarize IDS evaluation perspectives as "Specification evaluation items". The output is validated/reviewed through interviews with OEMs and IDS vendors
 <i>INPUT</i> Web attack information, papers Results of FY2019 Attack Scenario Survey and Analysis 	 INTPUT Detection function required by IDS (security event) Disclosure of IDS information (including results in fiscal 2019) OEM, IDS vendor interview
• Detection function required by IDS (security event)	<i>OUTPUT</i> • List of Specification Evaluation Items


Activity a Approach (2/3)

Develop drafts of "Specification evaluation items" and "Basic test cases" based on attack information and papers on past cars, public information survey on IDS products, etc. and conduct interviews with OEMs and IDS vendors, and conduct IDS actual machine surveys to verify the validity.


Activity a Approach (3/3)

Develop drafts of "Specification evaluation items" and "Basic test cases" based on attack information and papers on past cars, public information survey on IDS products, etc. and conduct interviews with OEMs and IDS vendors, and conduct IDS actual machine surveys to verify the validity.

Criteria method of detect function

The method to derive the detection criterion from a certain past case was examined on [policy 2: Evaluate whether or not a hypothetical attack equivalent to that of a priors attack can be detected and analyzed] shown in the activity policy.

#	Overview
1	Select attack cases to be detected by obtaining attack cases.
2	Attack cases are decomposed into attack procedures for each vehicle component, requirements and objectives for establishing attacks are added, attack scenarios are created, and security events that may occur in each attack procedure are mapped.
3	Abstract attack scenarios to derive attack scenarios that are "equivalent" to attack cases.
4	Taking into account the specifications of IDS-equipped vehicles and the possibility of vulnerability, the abstraction attack scenario will be implemented in IDS-equipped vehicles, and the attack scenario that may be established in IDS-equipped vehicles will be created.
5	Consider specific actions according to the risk assessment methods and response methods defined by OEM/ supplier for the assumption attack scenario.
6	Of the security events that may occur in the in-vehicle network due to an attack, those that should be detected by IDS are selected and derived as a requirement.

Research on fundamental IDS functions (1/3)

The security conference web information and vulnerability information held by 2020 were examined, and 12 cases directly related to the vehicle were analyzed, and the security event was derived.

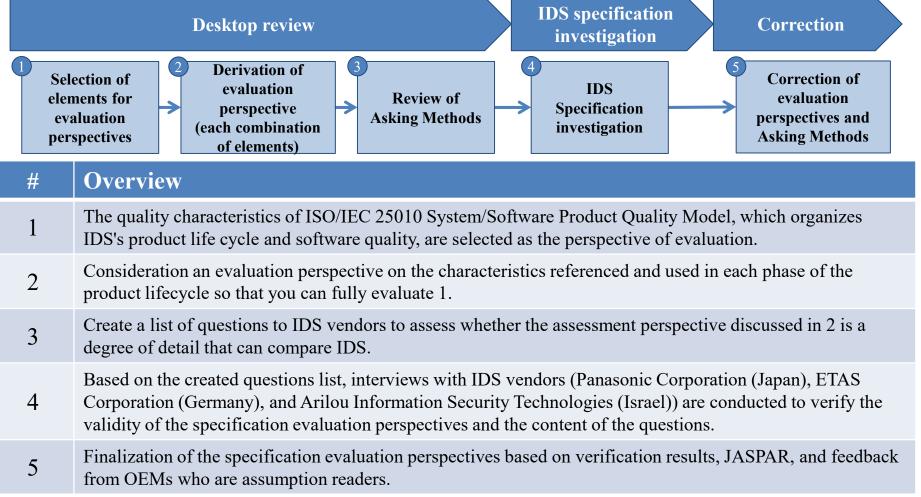
		Cases	Cases analyzed in detail			
Web information and vulnerability information			1329	6		
Research Paper			1062	6		
Tota		Total	2391	12		
Scope	Event	Security	Event Examples			
	Behavior of context conflicts on in- inconsis		nding control messages that do not affect basic operation at timings onsistent with the running state, and sending valid diagnostic messages at ings inconsistent with the running state			
Network	Attacks on the UDS protocol	Attacks on the UDS protocol				
	Physical connection of fraudulent devices to the on-board NW		Connecting External Devices to OBD I/F			
	Fuzzing attacks on in-vehicle NWs Fuzzing		attacks from OBD I/F			
Fraudulent behavior Invokin		Invoking	a system call library from an unsp	ecified process		
Illegal external communication Comm		Commun	ication with a source/destination o	utside the car that is not permitted		
	Invalid file system operation		gAttributes of Important Files (Per	missions, etc.)		
	Fraudulent app installation		Installation of regulation apps			
Host	Host Invalid log		Invalid system logs, application logs			
Unspecified frequency of errors		Request Processing Errors to External Public Services More Than a Certain Number of Times per Hour				
	High load High CPU and memory load conditions					
Changing the Firmware Changi		Changing	anging the Firmware			

Research on fundamental IDS functions (2/3)

The 12 cases covered are as follows.

Information source	Attack Case Overview
USENIX Security '20 Technical Sessions	In BT/WiFi where the authentication function is defective, OBD dongle was connected, and the message which disables the remote lock was injected into the in-vehicle network, and the vehicle could be stolen. [Haohuang Wen, 2020]
Blackhat USA 2015	In FCA Jeep Cherokee, the vehicle can be remotely accessed from any terminal on the NW of Sprint, the host (OMAP) of HU/TCU can be accessed by SSH to the exposed 6667, and the FW of the CAN controller (V850) can be rewritten, and any CAN message (steering, braking, etc.) can be transmitted through the SPI. [Dr. Charlie Miller, 2015]
Vulnerability information	The buffer overflow vulnerability of the BT module of the DCU (Display Control Unit) such as Toyota Lexus is used to automatically connect to an external WiFi AP, and the firmware of the CAN controller is tampered with to override the message filtering function, and diagnostic messages can be sent to the CAN bus by connecting WiFi to the vehicle from the outside. [Lab, 2020]
Blackhat USA 2019	A command can be sent to a service waiting on the TCP port through OBD I/F or USB I/F of the HU of the BMW, a CAN message can be sent to K-CAN using TOCTOU vulnerabilities, and an ECU can be reset or a seats can be moved back and forth through the UDS message. [Zhiqiang Cai, 2019]
Blackhat USA 2019	By inserting the update management file of the crafted navigation from USB I/F of HU of BMW, and utilizing the vulnerability of the process to analyze the update management file, it was possible to reset an ECU can be reset or a seats can be moved back and forth through the UDS message. [Zhiqiang Cai, 2019]
Blackhat USA 2019	A bogus base station was installed, and the response of BMW ConnectedDrive service was rewritten, and the attacker's web server was accessed, and an ECU can be reset or a seats can be moved back and forth through the UDS message by utilizing the vulnerability of the browser, etc. [Zhiqiang Cai, 2019]
Blackhat USA 2019	A bogus base station sent a NGTP (BMW Remote Service) message for ConnectedDrive over SMS, allowing for unauthorized use of functions for remote services (such as opening doors, horns, lights, etc.). [Zhiqiang Cai, 2019]
Blackhat USA 2019	With BMW's vehicle, MITM attacks for communication between false base stations and vehicles are performed, signatures for Provisioning data are tampered with, and the buffer overflow vulnerability of TCU is utilized to reset ECU and move seat back and forth through UDS messages. [Zhiqiang Cai, 2019]
Web information	In Viper's smart alarms, a vulnerability in the servers' APIs could impersonate legitimate users and track vehicles, or shut down engines. [PARTNERS, 2019]
Vulnerability information	In Daimler Mercedes-Benz Me App, after stealing access token used between the application and the server, it can impersonate the legitimate user, log in to the server, vehicle functions (such as locking/unlocking the door that can be used through the application) can be used. [NVD, CVE-2018-18071 Detail, 2018]
Vulnerability information	Since there were only 256 combinations for Security Access, the attacker could calculate the keys and bloat the airbags. [NVD, CVE-2017-14937 Detail, 2017]

Research on fundamental IDS functions (3/3)


The IDS basic requirements derived from the analysis results of the cases are as follows.

* The specific basic requirements is stated only in the guidelines.

Major class	Small classification	ID
	No false a coitives	SD-FP-1
	No false positives	SD-FP-2
		SD-TP-1-1
	Error in the data of a single message	SD-TP-1-2
		SD-TP-1-3
	Transmission cycle error	SD-TP-2-1
		SD-TP-2-2
	Error in relation to previous/next	SD-TP-3-1
	message	SD-TP-3-2
		SD-TP-4-1
Detection	Context error	SD-TP-4-2
Function		SD-TP-4-3
		SD-TP-4-4
	Status error of in-vehicle NW	SD-TP-5-1
		SD-TP-6-1
	Attacks on diagnostic protocols	SD-TP-6-2
		SD-TP-6-3
		SD-TP-6-4
	Attacks on diagnostic protocols	SD-TP-6-5
		SD-TP-6-6
		SD-TP-6-7
		SD-TP-6-8
		<u>SL-1-1</u>
Logging Fun	ction	SL-1-2
		SL-1-3
Notification 1	Function	SN-1-1

IDS Specification Evaluation Perspectives (1/9)

Based on "Policy 1: Evaluate the outline at a level of detail that is comparehensive and comparable to IDS", a specification evaluation perspective was derived using the following flow.

IDS Specification Evaluation Perspectives (2/9)

The questions to IDS vendors are as follows.

Security Function Classification	Function	Item
		Form of offering a commercial version
	Form of married	IDS provided for PoC
	Form of provision	Supported platforms (for SW provide)
		Product Type
Basic		Supported In-vehicle Network Protocols
Specificati	Protocol	Supported Top CAN Protocols
ons		Supported Top Ethernet Protocols
		Detection method
	Other	Amount of used memory
	Other	SOC linkage
		Communication function outside the car
		Necessity of DBC file
	Detection Settings	Information required in addition to the DBC file
Detection		Availability of setting tool
Detection		Threshold specification parameter
	Detection	Security events to be detected
	Detection	How IDS vendors adjust detection parameters
Supported	Logging/Notification Setting Method	Logging/Notification Setting Method
	Lagging	Steady-state logging items
	Logging	Logging items at detection
	Notification	Notification Items on Detection
	Detailed analysis	Availability of log analysis support tool
Pagavarr.	Undata	Update target (Physical port used)
Recovery	Update	Update target (using OTA)

Question	Option			
	Load condition error of in-vehicle network			
	Connecting unknown external devices or sending messages			
	Communication protocol error			
	Operation outside the specifications of the vehicle (transmission cycle, data threshold)			
Select the security event to be	Operation that differs from the normal state of the vehicle defined in the rule (e.g., an error such as a threshold value for a change in the value)			
detected.	Operation impossible as a vehicle condition (door open during high-speed running, etc.)			
	Operations that cannot be considered as the driving environment recognized by the sensor (left turn steering operation in the right curve, etc.)			
	Deviation from rules for source and destination (IP, port- based)			
	Others()			

X Abbreviation for Proof of Concept. Verification the feasibility of new ideas and concepts and the effects that can be obtained from them.

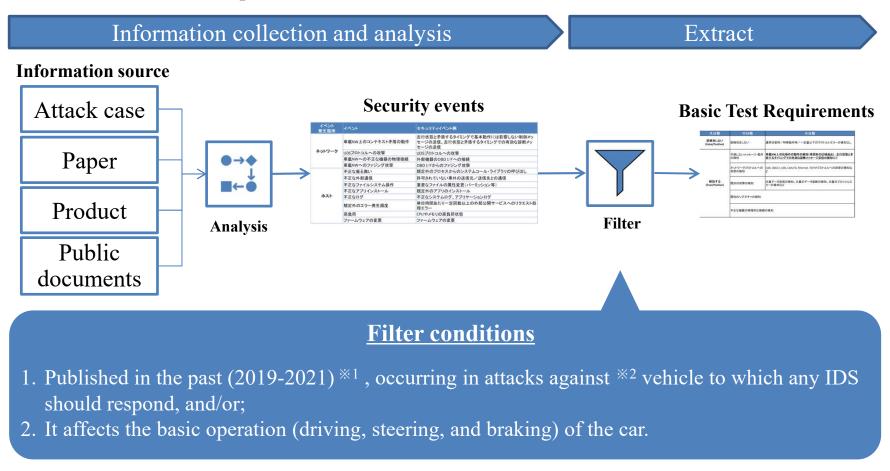
IDS Specification Evaluation Perspectives (3/9)

A consideration of the answers to the question list, for the three IDS vendors (six products), is as follows.

1. Security events

Since the results of the answers were generally same for each company, each company supports the basic detection function, and it is difficult to make a big difference in the nominal specifications, so it is not possible to make a comparative evaluation of each company based on this item alone. On the other hand, part of the functional specifications, such as the type of protocol supported and the detection function of external device connection, are vendor-specific.

2. Logging/notification method


It is a prerequisite that each company is supported or can be customized, and basically customized based on OEM requirements. Therefore, by knowing the gap between the functionality required for IDS as OEM and the flexibility of the customization function, it is considered that the comparison of IDS is possible to some extent.

3. V-SOC operation services

As there are differences between vendors that exist as service menus and vendors that do not, this item is considered useful for comparison and examinations when analyzing IDS monitoring, analysis after detection, and support for response and recovery as needed are included.

Basic Test Case (4/9)

The Security events identified from the attack cases that meet certain conditions are defined as basic test requirements.

%1. To take advantage of cases that have occurred in the past (see WP29 UN-R155 7 2.2.2 (f))

%2. Attacks that are considered applicable to other vehicles rather than attacks using vulnerabilities of special specifications of vehicles

Basic Test Case (5/9)

The basic test case summarizes the minimum points to be tested in the software unit test when IDS is selected or verified. The sections to be described are as follows.

Category	Item	Description	
	Test Case ID	Describe the ID	
	Test Case Name	Describe the name of the test case	
	Purpose	Describe the purpose of the test case	
Test points	SEv to be detected	Describe the SEv to be detected	
Test points	Type of attack msg to be injected	Type of attack msg injected for testing	
	Prerequisites	Describe the running condition of the vehicle	
	Derived Source Attack Case	Attack Case Derived from a Test Case	
	Test environment	Describe either the simulation environment or the test bed environment.	
	Prerequisite specifications of in-vehicle NW	Describe the specifications of vehicles equipped with IDS (vehicles equipped with IDS)	
	Test Procedure	Describe the test procedure after building the test environment. Add sequential numbers (1., 2., and so on) to each viewpoint.	
Test methods		Describe the expected value of the test result <hope (sd-ft-*,="" case="" detection="" sd-tp-*)="" test=""> The guideline specifies that these information will be output to the IDS detection log.</hope>	
	Expected value	Number of detection: Number of detected Detection bus: bus detected by IDS as SEv (see next slide) Detection Type: Detection Type (see next slide) Reason for detection: Reason for detection (see next slide) Message to be detected	
Remarks		Describe the precautions for implementation of the evaluation.	

20

Basic Test Case (6/9)

The definitions of the expected values (detection bus, type, and reason) of the basic test case items listed on all slides are as follows.

Detection bus definition

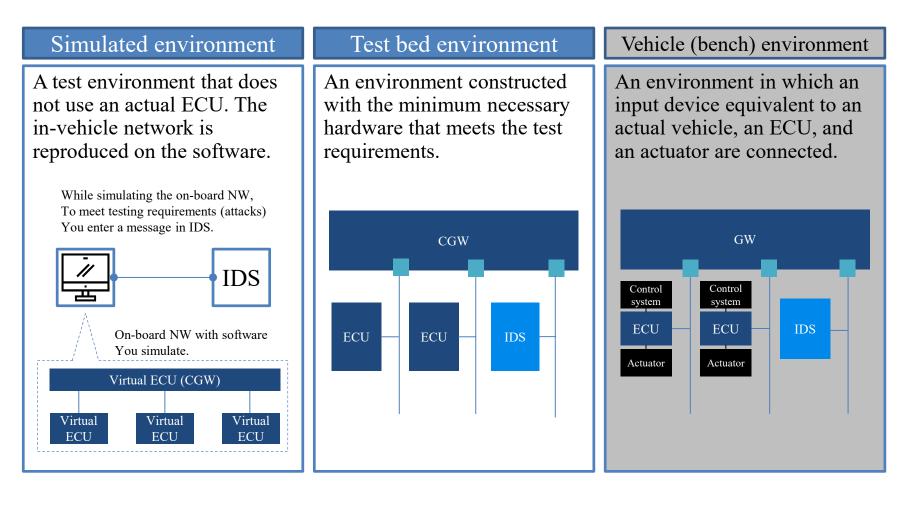
Possible Values	Description	
I	Information bus	
С	Control bus	
D	Diagnostic bus	

Detection Type Definition

Detection Type	Description
Specific	Detect specific messages
Range	Detect specific time intervals

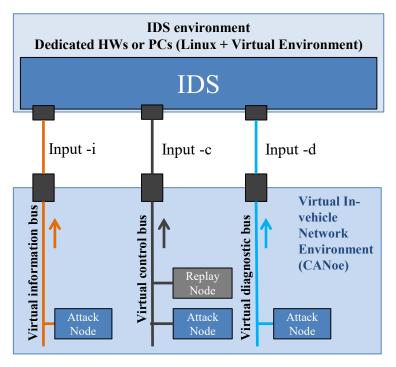
Detection reason definition

Reason for detection	Description	
Incorrect ID	Invalid ID	
Range	Range of incorrect data	
Cycle	Illegal transmission cycle	
Variation	Amount of change in incorrect data	
Order Fraudulent transmission order		
Amount Amount of fraudulent messages		
Diag UDS UDS protocol violation		
Diag OBD OBD protocol violation		
Diag DoCAN DoCAN protocol violation		
Diag Err	Receiving error responses (including negative responses)	

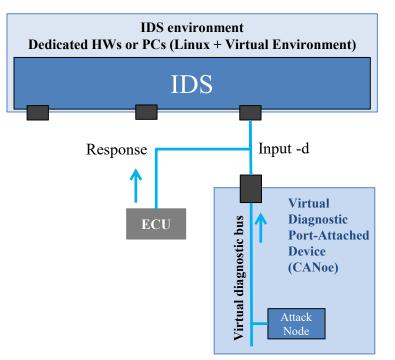

Basic Test Case (7/9)

An example of a fundamental test case is shown below.

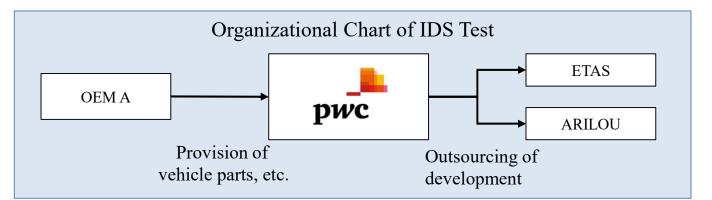
Category	Item	Content		
	Test Case ID	SD-TP-1-2		
	Test Case Name	Detecting the extent of illegal data by injecting the PT/chassis msg, body system msg		
	Purpose	Verify that messages that violate a defined range of signal values are detected.		
Test points	SEv to be detected	Range of incorrect data		
	Type of attack msg to be injected	PT/Chassis msg, Body System msg		
	Prerequisites	Driving condition: Constant velocity driving		
	Derived Source Attack Case	OBD2dongle/Wen(USENIX'20)-2 Jeep Cherokee(BH USA 2015)		
	Test environment	Simulation environment		
	Prerequisite specifications of in- vehicle NW	Vehicle speeds should not exceed between 0 km/h and 140 km/h.		
Test methods	Test Procedure	 The logging data of the control system bus of the actual vehicle is injected in the control system bus of CANoe from [Replay Block]. A total of three messages of 141, 142, and 143 Km/h in <vehicle speed=""> a injected to CANoe control system bus at any timing, one message at a time fro [i-Generator] (by pressing the key set at the injection timing).</vehicle> Confirming that the log as expected is output in the IDS detection log. 		
	Expected value	Number of detection messages: 3 Detection bus: C Detection Type: Specific Reason for detection: Range Detection messages: {attack msg}		
Remarks				


Basic Test Case (8/9)

Assumption test environments can be broadly divided into the following three categories. Among them, since the cost of the vehicle (bench) environment is larger than the simulation environment and the test bed environment in the test environment construction, this paper examines it on the assumption that it is carried out in either of the latter two.


Basic Test Case (9/9)

The basic configuration assuming the basic test case is as follows.


Simulation environment

Test bed environment

Verifying Test Cases with IDS Actual Machine Test (1/5)

The IDS actual machine test is not intended to evaluate IDS, but to verify the validity of the basic test case. The implementation system and contract form of the actual machine test are shown below.

#	Name of Contract	Main Sections to be Agreed	Contracting entity
1	Letter of intent of participation in IDS actual machine test	 Basic items: Function of IDS actual machine test, participants in implementation, mutual cooperation of PwC, etc. Loan for Use of Equipment: Contract of a separate "Loan Agreement for Use of Movables" Expiration date of the contract: Expiration date of the contract associated with the operation Discontinuation of the test on the actual IDS unit: Terms under which the demonstration experiment will be discontinued Ownership of Intellectual Property: Reservation of Intellectual Property Rights, etc. Confidentiality: Definition, handling, scope of disclosure, etc. of the following information 	OEM, IDS vendor, PwC
2	Lease Agreement for Use of Movable property	 Usage/Function: Purpose, description of use by provider, unavailability other than this activity Delivery/Refund: Location of Delivery/Return, Installation Method, Due Date for Return, etc. Cost sharing classification: Participant/PwC implementation classification, cost sharing classification Items to be provided (list): Informations of the types of systems, parts, etc. to be provided for IDS actual machine tests, and the tasks to be supported in relation to the provision of quantities, etc. 	OEM, PwC
3	Outsourcing agreement	 Contract Description: Developed Items, Technical Support Cost: Outsourcing Cost Delivery Date: Delivery Date, Acceptance Date, Due Date 	PwC, IDS vendor

25

Verifying Test Cases with IDS Actual Machine Test (2/5)

The basic test case is a baseline from the evaluation point of view, and some of the test methods and expected values need to be adjusted according to the specifications of the target vehicle (ECU) and IDS. In the actual machine test, the test method and the required specifications for IDS were adjusted based on the specifications of the ECU and IDS provided.

Contents of the test method adjusted based on the vehicle (ECU) specifications

- 1. Threshold of the signal value to be used in the test
- 2. Preconditions for permitting specific values of the signal values used in the test (definition of the context in which a specific signal value is permitted)
- 3. Maximum allowable periodic disruption of messages used in the test (10%)
- 4. Maximum bus load for each bus (95%)

Policy for coordinating and implementing test methods based on IDS specifications

- a. Test cases that can be tested with reference to other test cases are excluded.
- b. Test cases related to functions (remote functions, etc.) that are not used in the vehicle in the actual machine test are excluded.
- c. Functions that are considered not difficult to implement (they can be developed as required at a cost that is not too high), such as the output of the cumulative number of detection occurrences, are excluded.
- d. If the base IDS is able to detect SEv, but it does not detect the expected value of the test case (detection count, detection reason), and if it requires more than a certain cost to detect it as expected, it should be excluded or IDS requirements should be adjusted (whether it actually operates as expected when PoC are used with OEM, or when it is mounted on a mass-production vehicle depends on the coordination with the IDS vendor).

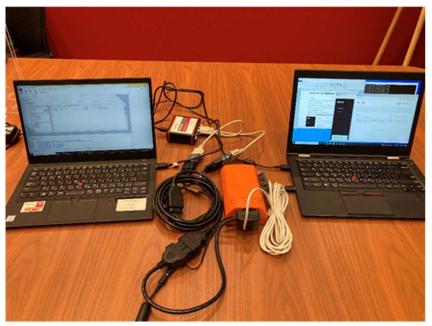
Verifying Test Cases with IDS Actual Machine Test (3/5)

Among the target items excluded, *a to c are test cases that are excluded based on the adjustment and implementation policy of the test method based on the IDS specification defined in the previous slide. *1-3 are test cases that are excluded based on the specifications of the Base IDS and discussions with vendors. The reasons for this are described on the following slide.

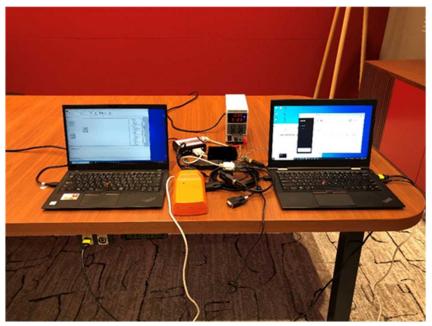
Major class	Small classification	Test Case ID	ETAS	ARILOU
	IN a talse positives	SD-FP-1	0	0
		SD-FP-2	Not applicable (*a)	Not applicable (*a)
		SD-TP-1-1	0	0
	1. Emerin the data of a single masses	SD-TP-1-2	Adjustment (specification of msg)	Not applicable (*1)
	1. Error in the data of a single message	SD-TP-1-3	Adjustment (prerequisites)	Adjustment (Detection target msg is output only to the payload.)
	2 Transmission evels armon	SD-TP-2-1	0	Adjustment (detection count)
	2. Transmission cycle error	SD-TP-2-2	0	Adjustment (detection count)
	3. Error in relation to previous/next	SD-TP-3-1	Adjustment (specification of msg)	Not applicable (*1)
	message	SD-TP-3-2	Not applicable (*a)	Not applicable (*a)
Detection		SD-TP-4-1	Adjustment (detection target msg)	0
function	4. Context error	SD-TP-4-2	0	Adjustment (detection target msg)
lunetion		SD-TP-4-3	Not applicable (*b)	Not applicable (*b)
		SD-TP-4-4	Adjustment (prerequisites)	0
	5. Status error of in-vehicle NW	SD-TP-5-1	0	0
	6. Attacks on diagnostic protocols	SD-TP-6-1	Adjustment (prerequisites)	0
		SD-TP-6-2	Adjustment (prerequisites)	Adjustment (Detection reason)
		SD-TP-6-3	Not applicable (*2)	Adjustment (Detection reason)
		SD-TP-6-4	0	0
		SD-TP-6-5	Not applicable (*a)	Not applicable (*a)
		SD-TP-6-6	0	0
		SD-TP-6-7	0	0
		SD-TP-6-8	0	0
			0	0
		SL-1-2	Not applicable (*c)	Not applicable (*c)
		SL-1-3	Not applicable (*c)	Not applicable (*c)
Notification for	Notification function SN-		0	Not applicable (*3)

27

Verifying Test Cases with IDS Actual Machine Test (4/5)


Reasons for exclusion from the Base IDS specification (previous slide*1 to 3) are shown below.

Comment number	Reasons for Exclusion
(*1)	ETAS/ARILOU's IDS customizes the system for OEMs. However, in order to shorten the development period, the IDS actual machine test has a minimum specification that outputs only one high-priority detection reason (e.g. "illegal transmission period") when a periodic transmission message is injected. On the other hand, the original expected value was to output all the corresponding detection reasons for the attack message (e.g. "illegal transmission cycle" and "invalid data range" as detection reasons). This time, the test cases that had the above effects were excluded, and the attack message to be injected was set to "not periodically send" in the target of the detection rule, etc. were adjusted.
(*2)	ETAS's base IDS does not support sequencing or stateful detection rules, so some test cases were excluded.
(*3)	IDS of ARILOU can be output to other CAN buses for IdsR module of AUTOSAR, for example, but this time, the message transmission function to the on-board network was omitted in order to shorten the development man-hour. For this reason, test cases related to the notification function were excluded.


Verifying Test Cases with IDS Actual Machine Test (5/5)

The IDS actual machine test environment was constructed based on the basic configuration which was assumed when the basic test case was examined, and it was confirmed that the procedure shown in all test cases targeted for the test could be carried out as expected. The actual architecture of the IDS-based verification by "Arilou Information Security Technologies" is shown below.

Simulation environment

Test bed environment

Activities for Practical Deployment

For the transfer of the guideline, a total of eight technical discussion meetings were held, and JASPAR to which the guideline was transferred received comments and fed back. The hosting results are as follows.

Meeting Name	Date	Agenda	
1st Technical Review Meeting	October 9, 2020	• Explanation of activity a.	
2nd Technical Review Meeting	December 18, 2020	 Effectiveness of operations Counseling regarding equipment provision	
3rd Technical Review Meeting	April 14, 2021	 Usage Scenes of IDS Development Process Verification and Assumed Basic Test Cases Scope of the fundamental test case 	
4th Technical Review Meeting June 28, 2021		Basic Test Case Test Perspective	
5th Technical Review Meeting	July 29, 2021	Basic Test Case Test Method	
6th Technical Review Meeting October 5, 2021		• Specification evaluation point of view	
7th Technical Review Meeting November 18, 2021		• Explanation of the purpose of activity a. (again)	
8th Technical Review Meeting	February 10, 2022	 Explaining comments from OEMs that challenges in launching IDS development Verifying schedule to transfer 	

Activities for Practical Deployment

Though the transfer of the guidelines has been accepted, the specific office procedures are planned for the end of May 2022. In addition, substantial research such as actual test and content study was completed at the end of March, but feedback from JASPAR will be handled until immediately before the transfer.

#	Work and Procedures	Working entity	Status
1	Finalization of the SIP version of the guidelines	Work: PwC Review: JASPAR, IDS Assessment Guideline Assumption Readers	Agreed with JASPAR and SIPs to fix by the end of May.
2	Determination of contract contents regarding transfer	NEDO, JASPAR	Adjusting
3	Transfer	PwC, NEDO, JASPAR	Scheduled for the end of May

b. Research on connected car threat intelligence and initial response support

Research Objectives (Repeat)

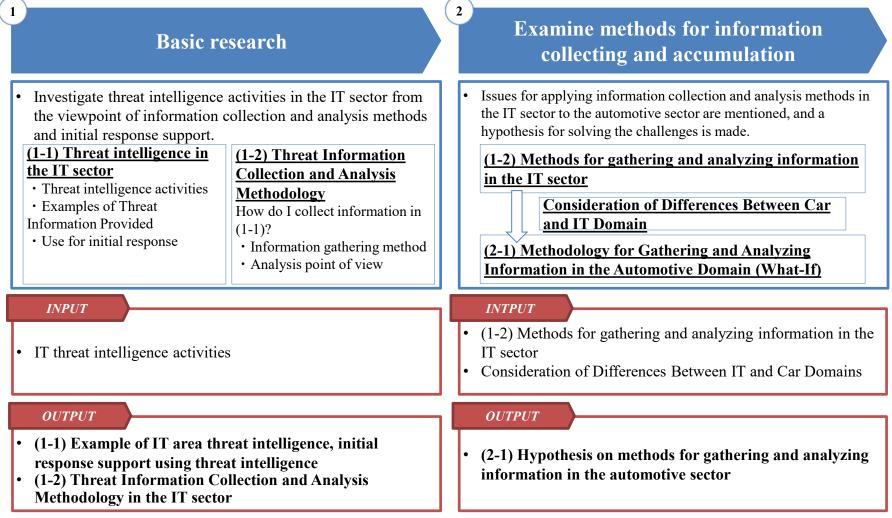
The basic specifications for initial response support using Connected Car's method of gathering and accumulating threat information and threat intelligence will be formulated, and operation will be transferred to industry organizations in 2023.

- **#** Objectives overview set by SIP
- b "Research on connected car threat intelligence and initial response support"

Consider the method of collecting and accumulating threat intelligence, conduct demonstration tests of attack monitoring using honeypots, develop basic specifications of systems for initial response support, and transfer to relevant industry groups to support collaborative development in the automotive industry.

Project objectives

- The ultimate goal is to transfer the operation of the basic system specifications to provide initial support for incident response to industry groups in 2023.
- In initial support for incident response, assuming that sharing of threat information within the industry through the "Information Sharing System" is useful, the basic specifications for collecting and accumulating threat information and initial support using them will be formulated by the end of fiscal 2021.
- The basic specifications of the entire system are examined when these elements are operated as a system, and the operation transfer to the industry group which is a practical development, and a final goal is completed in 2023.

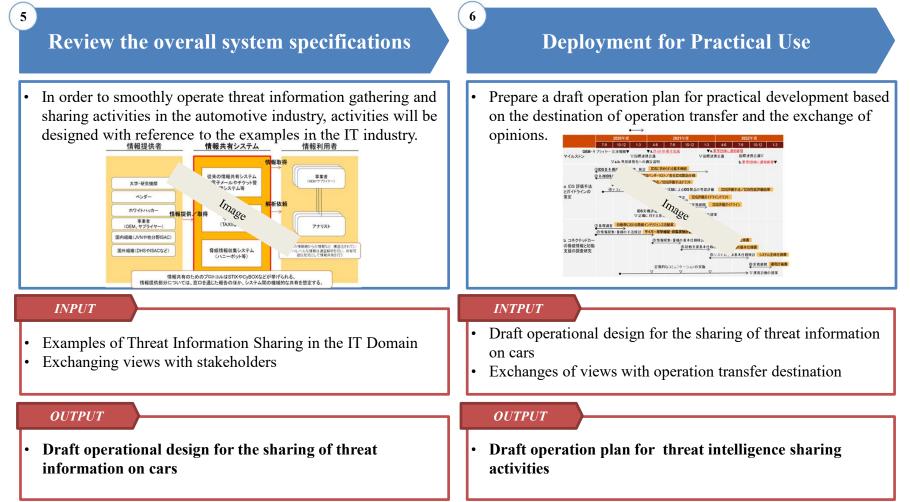

Activity b Survey/Research Approach

Based on the threat intelligence activities in the IT industry that precede the incident response using threat intelligence, the application to the automotive sector is examined.

Threat Intelligence Investigation in the IT industry	Investigate application of threat intelligence for automotive industry		Deployment for Practical use in the automotive industry	
 1. Basic research The threat intelligence activities in the IT sector are examined from the following perspectives in order to apply them to the automotive sector. (1-1) What is Threat Intelligence, and how is it utilized for countermeasures? (1-2) How do you gather and analyze information to form threat intelligence? 	2. Examine methods for information collecting and accumulation The method to apply the gathering and analysis method and of the threat information to be used for initial response support in the IT sector is examined, and the hypothesis is made. It focuses on the differences between IT and cars that can affect the formation of threat intelligence.	 3. Examine basic specifications for information gathering and accumulation A demonstration test will be conducted to examine methods for gathering and accumulating information in the automotive industry. 4. Examine basic specifications for initial response In the automotive industry, the method to support the initial response by utilizing the intelligence obtained by the method demonstrated in [3] is examined. 	5. Review the overall system specifications In 3 for the automotive industry This paper examines problems and resolves for collecting and analyzing threat information by the technique, sharing the information, and operating the mechanism to support the initial response by the method of 4.	6. Deployment for Practical Use Transferring the framework discussed in 5 to industry organizations Create a plan for the purpose.

Approach overview towards FY2020 targets

In FY2020, the threat intelligence activity in the IT sector and the application to the automotive sector was examined. The hypothesis of the threat information gathering technique of the car was made.


Outline of Approach to Targets for Fiscal 2021

In fiscal 2021, a demonstration test was conducted based on a hypothesis created in the previous year. Specification of initial response support utilizing collected threat information was examined.

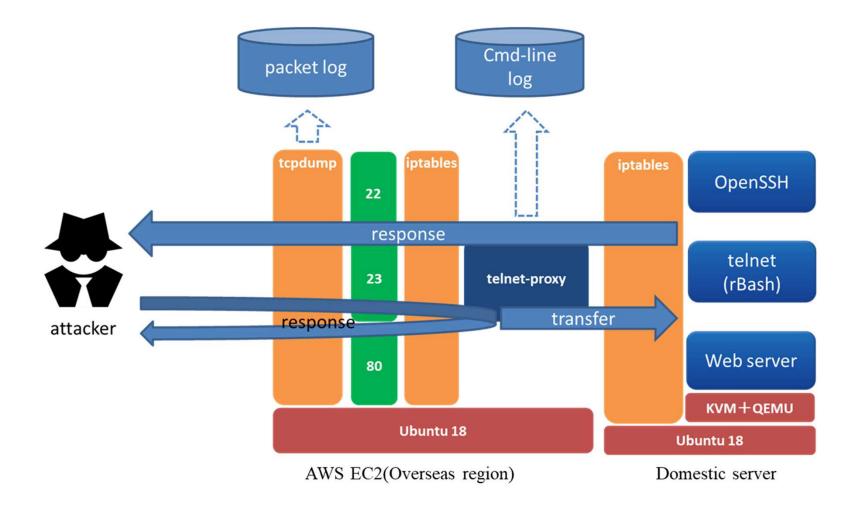
Outline of Approach to Targets for Fiscal 2022

In fiscal 2022, a mechanism to collect, analyze, and share threat information using threat information as an industry will be examined, and a plan for the transfer of practices to industry groups will be examined.

Threat Information Gathering Method

In order to establish gathering and accumulation method of threat information in the car domain, the threat information observation experiment is carried out referring to the case of implementation in the IT domain. In this activity, the research is carried out focusing on honeypots and CTFs.

Purpose	• Establishing methods for gathering and accumulation threat information in the car domain.			
	• In the IT field, various methods have been tested and operated to actively collect threat information on the trends of cyber attackers, attack methods, etc., and they are useful for the construction of cyber			
What-If	intelligence.In the connected system, the threat information can be collected by the same technique, and cyber intelligence can be constructed.			
	(Example) Fixed point observation Honeypot CTF Bug Bounty OSINT gathering			
gathering information (Assumed)	 Cyber Attacker Properties (Indicators such as IP Address and URL) Attack operandi (TTPs of attack codes, malware, etc. attempted) 			
Approach	• Attack patterns on connected systems are organized, and the possibility of collecting threat information in connected systems is evaluated through actual observation experiments using the threat information collection method in the IT field.			


Examining basic specifications for information gathering and accumulation

Examination of basic specifications for initial response

Examination of overall system specifications

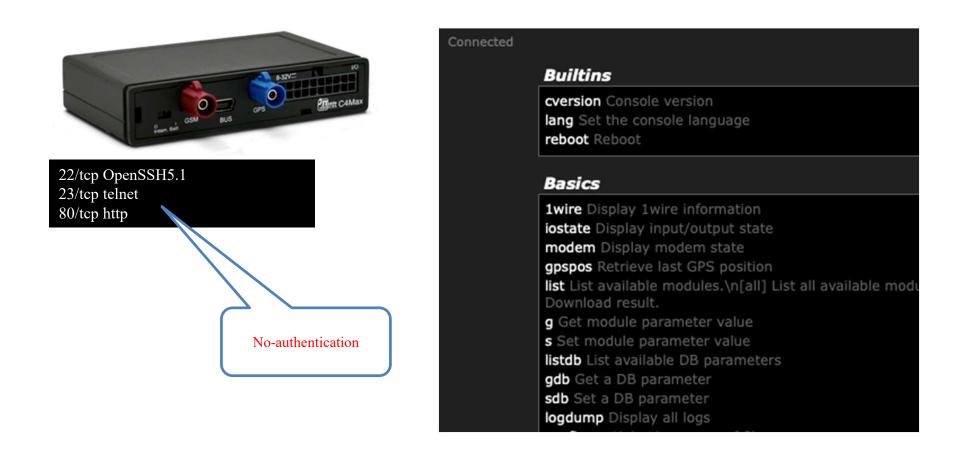
Honeypot demonstration

We surveyed aftermarket products that can be discovered by a wide area scan, developed a prototype of honeypots for those products, and began observational experiments on cyber attacks in late January 2021.

Devices that can be discovered from the Internet

Twelve devices such as on-board routers and gateways were discovered by the Internet wide area scan.

Device name	Web-base/Cluster-base	#devices	Discovered Countries	Open ports
Product A	Cluster-based	278	NL 26.0% SE 18.9% US 16.3%	22/tcp 80/tcp 8080/tcp
Product B	Cluster-based	391	ES 59% MA 20.3% DE 11.9%	22/tcp 23/tcp 80/tcp
Product C	Web-search-engine-based	821	US 96.5% BR 2.2%	8443/tcp 22/tcp 8080/tcp 80/tcp 443/tcp
Product D	Web-search-engine-based	186	IT 59.1% DE 40.0%	80/tcp or 81/tcp 21/tcp 22/tcp
Product E	Web-search-engine-based	88	DE 95.6%	80/tcp 22/tcp 23/tcp
Product F	Both	104	US 60.0% ES 11.8% AU 10.0%	2332/tcp 9191/tcp 9443/tcp
Product G	Web-search-engine-based	5	TW 100.0%	161/tcp
Product H	Web-search-engine-based	360	ES99.4%	80/tcp
Product I	Web-search-engine-based	3	DE 100%	21/tcp 80/tcp 443/tcp
Product J	Web-search-engine-based	67	US 51.5% FR 19.6% CN9.6%	2332/tcp 9191/tcp 9443/tcp
Product K	Web-search-engine-based	144	ES 99.9%	21/tcp 22/tcp 80/tcp 123/tcp
Product L	Web-search-engine-based	85	Us 84.3%	8443/tcp 22/tcp 8080/tcp 80/tcp 443/tcp

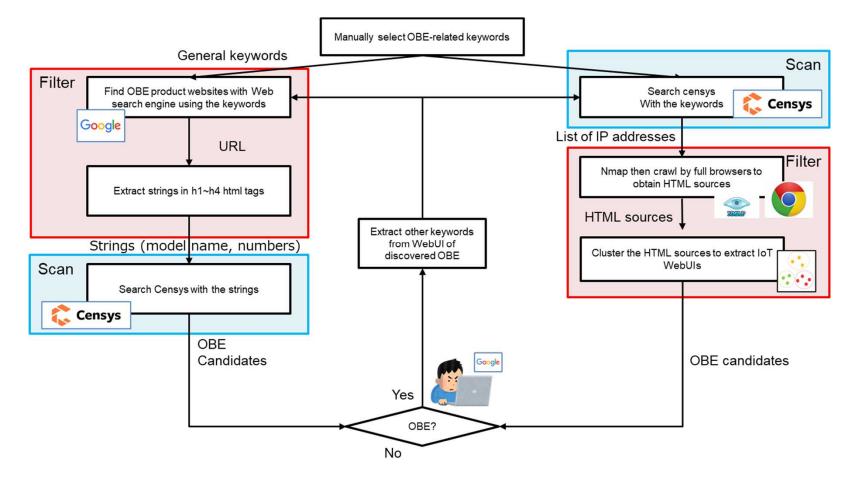

Examining basic specifications for information gathering and accumulation

Examination of basic specifications for initial response

Examination of overall system specifications

Example device that can be discovered from the Internet

For some of the devices discovered, some services, including without authentication Telnet, were published on the Internet.

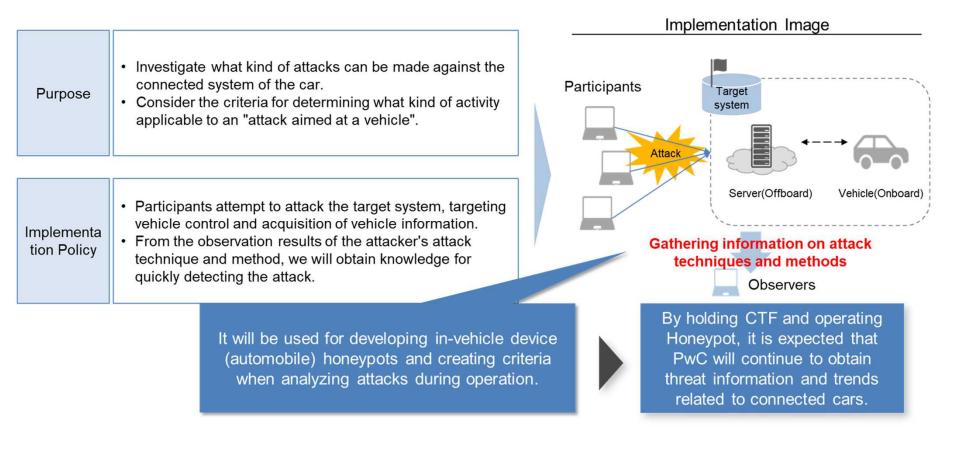


Examining basic specifications for information gathering and accumulation Examination of basic specifications for initial response

Examination of overall system specifications

About Device Search Methodology

In order to search in-vehicle devices efficiently, two approaches were implemented: an approach is to search the Web site of OBE products (keywords search using a Web search engine), and the other approach is to search Censys directly about keywords related to OBE products.

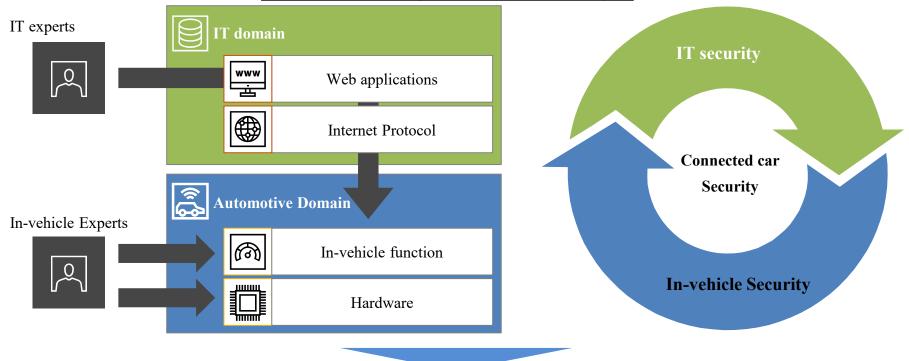


Examining basic specifications for information gathering and accumulation Examination of basic specifications for initial response

Examination of overall system specifications

About Implementation of Playground (CTF)

In the connected system, to know what attack is possible, a playground is carried out and the insights of the attack against the connected system is obtained from the behavior and attack method of the participant.



Examination of basic specifications for initial response

Threat Information Descriptions and Sharing Methods

In order to gather and share effectively threat information, the threat information to be handled must be structured at a certain level and the sharing methods must be formulated. Based on the richness of the information that can be described and the utilization status in the IT domain, this activity focused on STIX/TAXII.

BACKGROUND: With the connectivity and automation of vehicles, there has been an increasing number of links with existing Web and IT technologies.

The research will be conducted focusing on STIX/TAXII that are the most popular in the IT domain and have many types of information that can be described for efficiently utilizing threat information in a connected system that combines vehicle and IT systems.

(Reference) Information that can be written in STIX format

		STIX	
#	Classification*1	information*2	
1	IOC (Breach Indicators)	Identity/Identifier	Information representing the actual individuals, organizations, groups, systems, industries, etc. targeted or potentially targeted by the attack.
2		Indicator	Information about technical logs or events that indicate the occurrence or doubt of an attack. Hash value, IP address, domain name, certificate, etc.
3		Location	Location information about attacks such as cyber attackers, attack platforms, and targets.
1		Observed Data	Information about cyber attacks such as files, systems, and network IP addresses. Unlike indicators and location information, it actually refers to (merely) information that has been observed more than once.
5	TTPs (Tactics/Techniques/Pro cedures)	Attack Pattern	Information that explains method (such as Spearphishing) a cyber attacker can use to attack a target.
5		Attack Infrastructure	Information about systems, software, physical/virtual resources, etc. for attack support functions. Describes the C2 server used at the time of attack, mobile devices that are part of the target system, servers, etc.
7		Intrusion Set	Information about attack patterns and groups (sets) of attack infrastructures with common properties that are considered to be created, coordinated, and implemented by a single cyber attacker.
3		Malware	Detailed information about how the attack program (malware) plugged into the target system works and does what.
)		Malware Analysis	Perform a specific analysis on a program suspected of being malware and show the results.
0		Tool	Information about legitimate software available to cyber attackers. Unlike malware, it refers to software that is legitimate software on the system and may be used by cyber attackers.
1	Security Alerts	Note	Provides information contexts by adding notes to existing STIX objects.
2		Opinion	Third-party evaluations of the accuracy of the data in STIX are called the Opinions. Five-step evaluation from strong consent to strong disagreement.
3		Vulnerability	Information on software and hardware requirements, design or implementation weaknesses / defects.
	Intelligence Report	Campaign	Information on cyber attack operations (campaigns). Describes a series of of malicious activities or attacks that occur over a period of time against a specific set of targets. A campaign can be characterized by its purpose and the incidents that occur, the target person or resource, and the resources that it uses (infrastructure, intelligence, malware, tools, etc.).
15		Report	Information that summarizes cyber intelligence focused on one or more topics such as cyber attackers, malware, and attack methods.
16		Threat Actor	Information about individuals, groups, or organizations that are considered to be malicious. It is characterized by its motivation, capability, goals, skill, past activities, etc.
17	Tool configuration	Action (configuration) policy	Information about actions to take to prevent or respond to cyber-attacks. Information about patching, firewall reconfiguration, employee training, policy changes, and so on.

Examination of basic specifications for initial response

Examination of overall system specifications

STIX's description of automotive threats

Threat-information from four studies was attempted to be described in STIX format using the following approach. Consequently, it was judged that the four threatinformation data focused on using SITX could be described.

Report/Paper	Obtained information STIX Object		Visualization	
Search for automobile attack cases and research reports.	Analyze the reports to obtain threat information.	Make the threat information into STIX object.	Visualizing STIX object using the OASIS STIX Visualizer(*)	
USENIX THE ADVANCED THE ADVANCED SSOCIATION SSOCIA	Image: state state state Image: state state state • Attack pattern IoC • Malware::::::::::::::::::::::::::::::::::::	<pre>("type": "handle", "ight": "handle", "d": "fobu:sd=d700-dedf-93dd-50070007ffcab", "object": Infrastructure", "spec_version": "sl:, "infrastructure", "reset_version": "sl:, "andlfdd": "2021-30 effitsball.00027, "mambffdd": "2021-30 effitsball.00027, "reset.pitcball.def00-46476-33dd-5000/0007ff2", "reset.pitcball.0004/00044076-33dd-5000/0007ff2", "reset.pitcball.0004/00044076-33dd-5000/0007ff2", "reset.pitcball.0004/0004000407, "mambffdd": "Mallank the provisioning update", "descriptball." Higlank the provisioning update need to setup a fake 650(61) "oxternal_references": [</pre>	<complex-block></complex-block>	

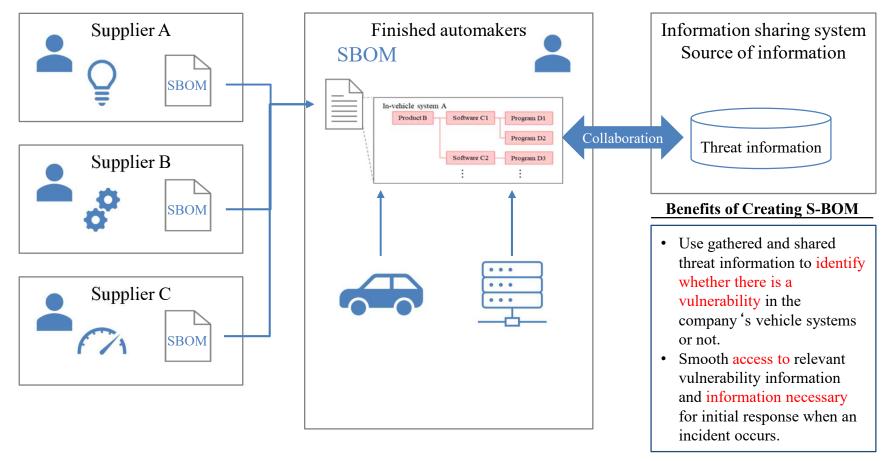
https://oasis-open.github.io/cti-stix-visualization/(Link)

#	Target vehicle type	Overview
1	BMWs with Connected Drive (BMWs)	A bogus base station was installed, and the response of BMW ConnectedDrive service was rewritten, and the attacker 's web server was accessed, then the ECU was reset or seats were moved back and forth in utilizing the vulnerability of the browser, etc. (2020)
2	Model S/X (Tesla)	We exploited the bufferoverflow vulnerability of WiFi connectivity in Marvell's Wi-fi Module (88W8688), which is built into Tesla Model S/X, and used TCP23 number port-of-service. (2018)
3	E-Class (Mercedes-Bentz)	The TCU (HERMES/Linux/ARM) eSIM can be connected to a back-end server through an attacker's 4G router, and Mercedes ME functionalities (such as door locking/unlocking) can be utilized for other people's cars. (2020)
4	Cherokee (Jeep)	It is reported that the ECU firmware can be rewritten through the cellular telephone network, and BCM such as the vehicle's steering, air conditioner, stereo, etc. can be operated illegally for the driving vehicle. (2015)

Examination of basic specifications for initial response

Initial response in this activity refers to activities that prevent incidents through information gathering during normal times and response activities after an incident occurs.

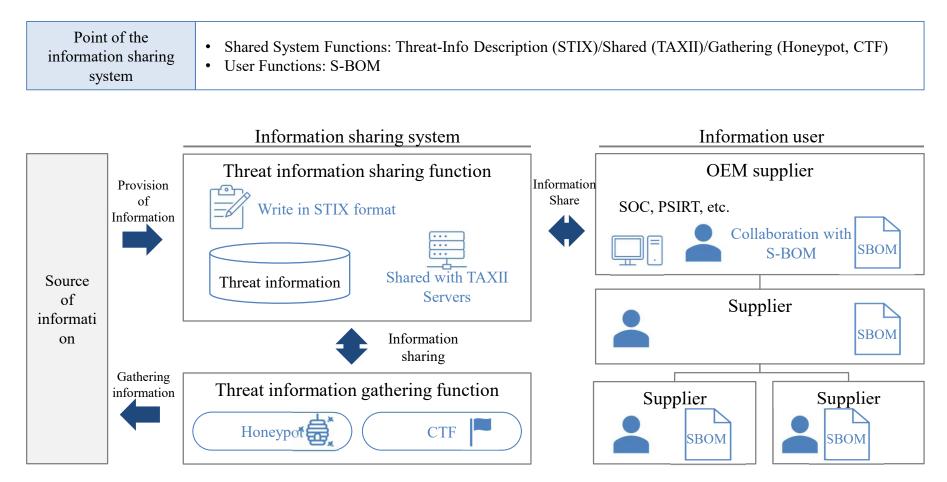
Phase		Phase	Description	
	Preventive measures	Identification	- Identify threats and vulnerabilities related to owned cars and systems through information gathering	in this
		Defense	Take appropriate security measures against identified threats and vulnerabilities	
		Detection	Monitoring the vehicle system and detecting events	ſ
	Counterme asures for incidents	Response	Respond to incidents that have occurred	
			Recover incidents that have occurred and take permanent measures	


Scope of the Initial response

Examination of basic specifications for initial response

Examination of overall system specifications

Utilization of threat information for initial response


In order to facilitate the selection of threat information to be gathered and the determination of threat information gathered, a software list (S-BOM) within the company's products and systems must be created.

Examination of basic specifications for initial response

Examination of overall system specifications

The ideal image of the information sharing system is as follows. By using each element technology in gathering, accumulating, and sharing information, threat information can be smoothly utilized for initial response.

Status of collaboration between Japan and Germany

Status of collaboration between Japan and Germany

Trends in Automated Driving Security Development Assistance in Germany

In Germany, the Federal Department of Education and Research (BMBF) is leading the security research and development support for connected cars (automated driving), and at least four projects are currently in progress. The projects are in collaboration with SecForCARs.

R&D support requirements in Germany

The following outcomes needs to be included at minimum:

- Methods for protecting vehicles and infrastructures from cyber-attacks
- Methods for verifying vehicle security

#	Project Name	Activity theme	
1	SATiSFy (Implement of safety functions in an automated driving vehicle)	Evaluation of individual components (sensors, etc.) and their mutual interactions related to automated driving	
2	SecForCARs (Security of Connected Automated Vehicles)	Research and Evaluation of Methods and Tools for Securing Communication to Vehicles	
3	SecVI (Security Architecture of Communication Network for Vehicles)	Developing a Robust, low-complexity network architecture for vehicles	
4	VITAF	Ensuring the reliability of the automated driving How cyber-attacks are Detected and Responded Immediately Developing a mechanism to avoid impacts on safe operation even in the event of cyber-attacks Vehicle data protection (e.g. masking)	

Status of collaboration between Japan and Germany

Japan-Germany Collaboration Workshop

Five JAPAN-Germany collaboration workshops are planned, and as of April 2022, the third workshop has been held.

Time and location	Name of the meeting	Agenda
2021/7 Online	WS1	 Threat intelligence and Vehicular honeypots Concept and demonstration for integrated OTA software update IDS management concept for distributed IDS
2021/12 Online	WS2	 Threat intelligence and Vehicular honeypots Security Composition for Automotive System of Systems Platform and Hardware Security
2022/4 Online	WS3	 Threat information sharing system Discovery of exposed automotive devices Crypto Hardware security
Fall 2022 TBD	WS4	TBD
Fall 2023 TBD	WS5	TBD

© 2020 PwC Consulting LLC., PwC Cyber Services LLC. All rights reserved.

PwC refers to the PwC network member firms and/or their specified subsidiaries in Japan and may sometimes refer to the PwC network. Each of such firms and subsidiaries is a separate legal entity. Please see www.pwc.com/structure(Link) for further details.

This content is for general information purposes only and should not be used as a substitute for consultation with professional advisors.

This report documents the results of Crossministerial Strategic Innovation Promotion Program (SIP) 2nd Phase, Automated Driving for Universal Services (SIP-adus, NEDO management number: JPNP18012) that was implemented by the Cabinet Office and was served by the New Energy and Industrial Technology Development Organization (NEDO) as a secretariat.