

## Visualize the effects of reducing traffic accidents through Automated Driving and Driving Assistance(FY2019-FY2020) Report of Results Summary version

**Japan Automobile Research Institute** 

- **1.**Purpose of the project
- 2. Outline of the research
- 3. Setting of Assumptions
  - A. Set dissemination scenarios
  - **B.** Set signal indication and traffic regulation information
  - **C.** Pedestrian and bicycle models and traffic settings
  - **D. Set speed information**
- 4. Effectiveness in reducing traffic accidents



# **Purpose of this project**

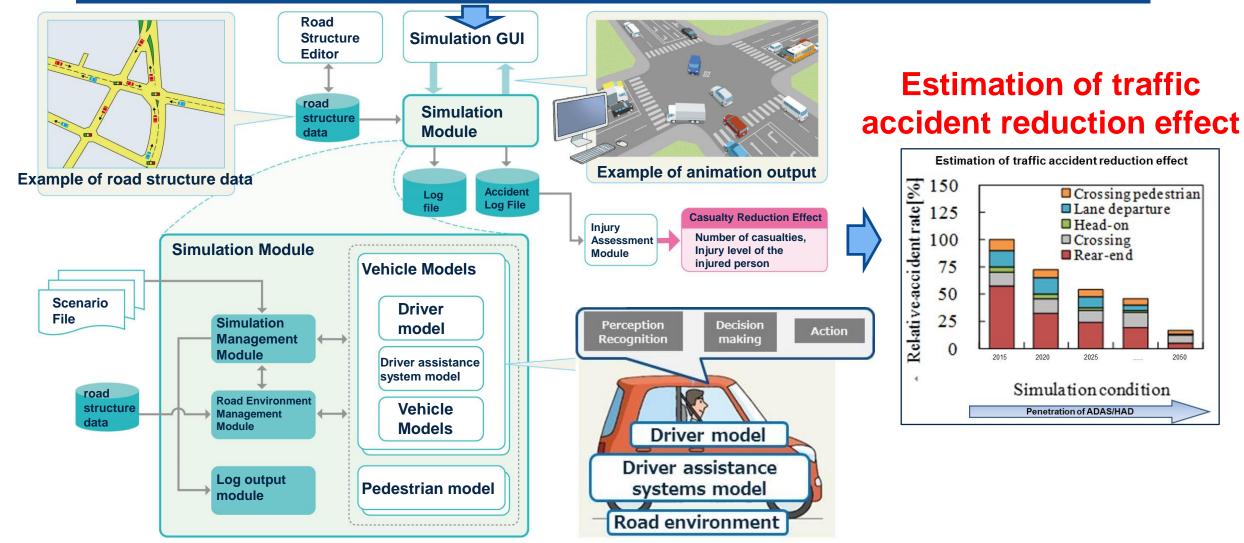
### [ Government policy ]

- To put vehicles with Level 2 driver assistance system into practical use on ordinary roads (in 2020)
- To put Level 3 automated vehicles into practical use on highways (in 2020)
- To put Level 4 automated vehicles into practical use on highways (around 2025) etc.

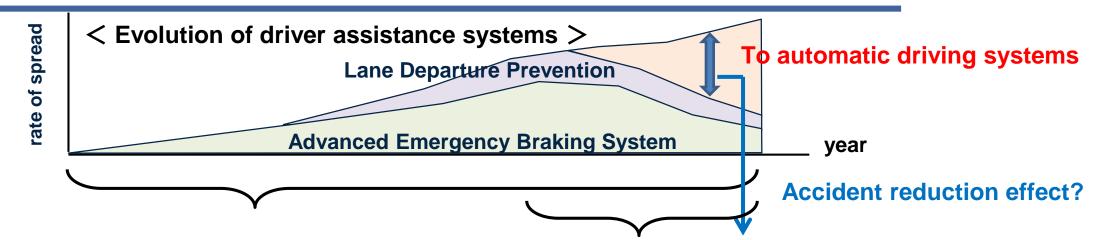
### [ Society's expectations ]

Expectations are rising for the practical application and spread of automated driving technology and driving assistance technology.

### [ Purpose of this project ]


Fostering social acceptance is necessary for the smooth implementation of automated vehicles and vehicles with driver assistance system in society

In this project, we use a traffic flow simulation to estimate the effect of traffic accident reduction according to the prevalence of automated vehicles and vehicles with driver assistance system.




# **Overview of the entire simulation**

#### Parameters for assumptions (models, dissemination scenarios, etc.)



# **Positioning of the simulation**



| Existing Simulation                                                                 | SIP Development Simulation                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic accident scene reproduction                                                 | Multi-agent traffic environment reproduction                                                                                                                                                                                     |
| For product Development: Competitive area (sensor specifications and control logic) | For policy making : cooperative area<br>⇒ Strategies for the popularization of automated driving                                                                                                                                 |
| Micro Simulation<br>(Reproduce a limited place and time)                            | Macro Simulation<br>(Assume all areas and times)                                                                                                                                                                                 |
| Traffic participants act according to the predetermined scenario                    | <ol> <li>Multi-agent         <ul> <li>Each traffic participant behaves independently and influences each other</li> <li>Error behaviors such as looking aside are also implemented. (Causes of accidents)</li> </ul> </li> </ol> |



# **Project summary**

| SIP Phase 1 (2015~2018)                                                                                                                                                                                                  | SIP Phase 2(2019~2020)                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| "Development and substantiation of simulation<br>technology for estimation of detailed traffic<br>accident reduction effects"                                                                                            | "Visualizing the Effects of<br>Traffic Accident Reduction "                                                                      |
| <ul> <li>Establish simulation technology</li> <li>Develop <u>behavioral models</u> for traffic participants</li> <li>Validation of the simulation technology</li> <li>(Preconditions are tentatively defined)</li> </ul> | Improvement of simulation accuracy<br><u>1 Enhance the accuracy of the behavioral models</u><br><u>2 Establish preconditions</u> |

#### **<u>①</u>Enhance the accuracy of the behavioral models**

Expand the pedestrian behavior model and establish a new bicycle behavior model

#### **2 Establish preconditions**

- A. Set dissemination scenarios (\*)
- **B.** Set signal indication and traffic regulation information
- C. Pedestrian and bicycle models and traffic settings
- **D. Set speed information**

(\*)From the "Study of the Impact of Automated Driving on Reducing Traffic Accidents and on Others"



### **3.** Setting of Assumptions **0.** Determine the car model to be simulated.

Organize the following data and determine the car models to be simulated in as much detail as possible so that highly accurate reduction effects can be estimated.

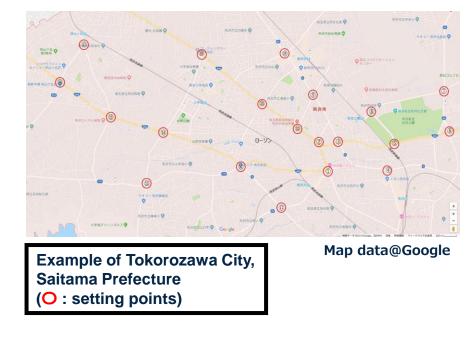
| ①ITARDA<br>Accident data |               | ②Dissemination scenario   |                        |         | ③National Road and<br>Street Traffic |                         |        | Setting up a car model   |       |                                  |         |                         |
|--------------------------|---------------|---------------------------|------------------------|---------|--------------------------------------|-------------------------|--------|--------------------------|-------|----------------------------------|---------|-------------------------|
|                          |               | (Impact study)            |                        |         | Information Survey                   |                         |        | car model                | Usage | contents                         |         |                         |
| car model<br>small car   | Usage<br>bus  | GVW                       | car model<br>small car | Usage   | GVW                                  | 11101                   | (MLIT) |                          |       | small car<br>Ordinary bus<br>car |         | 2number                 |
| Ordinary<br>car<br>light | bus           |                           | Ordinary<br>car        | bus     |                                      | car<br>model            | Usage  | contents                 |       | light<br>vehicle                 | passen  | 50~59 500~599           |
| vehicle<br>small car     | passen<br>ger |                           | light<br>vehicle       | passen  |                                      | bus<br>light vehic      | cle    | 2number<br>50~59 500~599 |       | small car<br>Ordinary            | ger     | 5number                 |
| Ordinary                 | vehicle       |                           | small car              | ger     |                                      | Ordinary of             |        | 3,5number                |       | car                              | venicie | 3number                 |
| car<br>light             |               |                           | Ordinary<br>car        | vehicle |                                      | light<br>vehicle        |        | 40~49 400~499            | [/    | light<br>vehicle                 |         | 40~49 400~499           |
| vehicle                  |               |                           | light                  |         |                                      | small car               | cargo  | 4number                  |       | small car                        | cargo   | 4number                 |
| small car                | cargo         | 3.5t or less<br>Over 3.5t | vehicle<br>small car   |         | 3.5t or less                         | Ordinary<br>car         |        | 1number                  |       | Ordinary<br>car                  |         | 1number                 |
| Ordinary                 |               | 3.5t or less              | Ordinary               | cargo   | Over 3.5t<br>3.5t or less            | Special<br>Vehicles     |        | 8number                  |       | Special Vehic<br>motorbike       |         | 8number                 |
| car                      |               | Over 3.5t<br>3.5t or less | car                    |         | Over 3.5t                            | freight an<br>passengei |        |                          |       | bicycle                          |         |                         |
| Special Vel              | licies        | Over 3.5t                 |                        |         |                                      | passenger               |        |                          |       | ЖНом                             | ovor 1  | there is no             |
| Large Spec<br>motorbike  | ial Vehic     | les                       |                        |         |                                      |                         |        |                          |       | scena                            | rio for | the spread of           |
| bicycle                  |               |                           |                        |         |                                      |                         |        |                          |       | and m                            |         | oose vehicles<br>ycles. |



# A. Set dissemination scenarios

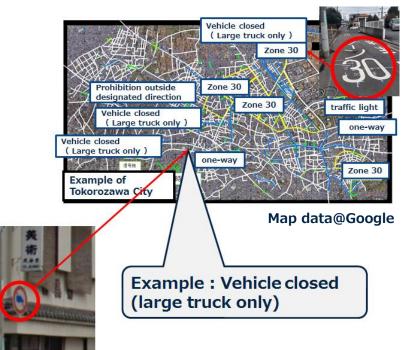
#### Converted the mileage of the "Impact Study" into the penetration rate of the simulation.

|                    |                   | Distance traveled [vehicle km]. |                     |                                       |                             |                                        |                      |                |                            |  |  |
|--------------------|-------------------|---------------------------------|---------------------|---------------------------------------|-----------------------------|----------------------------------------|----------------------|----------------|----------------------------|--|--|
| car model          | Automatic driving | 2015 2020                       |                     | 2025                                  | 2030                        | 2035                                   | 2040                 | 2045           | 2050                       |  |  |
|                    | C0                | 19,612,984,234                  | 15,657,055,859      | 9,586,978,203                         | 9,586,978,203 4,605,018,708 |                                        | 390,013,895 59,301,9 |                | 5,272,624                  |  |  |
|                    | C1                | 474,417,749                     | 5,269,971,772       | 5,269,971,772 12,017,902,497          |                             | 19,516,298,255                         | 20,011,312,815       | 18,993,529,031 | 17,108,689,883             |  |  |
| Passenger          | C2                | 0                               | 271,357,478         | 331,594,216                           | 259,162,351                 | 148,591,884                            | 56,271,738           | 12,792,511     | 1,598,175                  |  |  |
| Light              | C3                | 0                               | 194,231,972         | 1,292,181,037                         | 1,290,980,457               | 920,646,902                            | 472,965,437          | 160,271,665    | 33,157,530                 |  |  |
| vehicles           | C4                | 0                               | 0                   | 0 263,690,419 1,488,326,777           |                             | 1,301,426,942                          | 889,449,555          | 426,384,116    | 130,032,455                |  |  |
|                    | C5                | 0                               | 0                   | 0                                     | 430,601,394                 | 2,121,757,969                          | 1,868,857,554        | 1,271,945,477  | 607,531,232                |  |  |
|                    | C6                | Cate                            | egory to            | SAE love                              |                             | 445,063,281                            | 2,739,405,524        | 4,669,174,445  | 5,676,756,083              |  |  |
| 合計                 |                   | 20 0 Cate                       | gury tu             | SAL IEVE                              | 1                           | 26,077,263,581                         | 26,428,276,519       | 25,593,399,166 | 23,563,037,983             |  |  |
|                    |                   |                                 |                     | Con                                   | nbine C1 and C2 an          | nd convert to SAE le                   | evel                 |                |                            |  |  |
| car model          | Automatic driving | 2015                            | 2015 2020 2025 2030 |                                       | 2030                        | 2035                                   | 2040                 | 2045           | 2050                       |  |  |
| Passenger          | Level0            | 9,612,984,234                   | 15,657,055,859      | 9,586,978,203                         | 4,605,018,708               | 1,623,478,347                          | 390,013,895          | 59,301,922     | 5,272,624                  |  |  |
|                    | Level1            | 474,417,749                     | 5,541,329,250       | 12,349,496,713                        | 17,369,329,361              | 19,664,890,139                         | 20,067,584,553       | 19,006,321,542 | 17,110,288,059             |  |  |
| Light              | Level2            | 0                               | 194,231,972         | 1,292,181,037                         | 1,290,980,457               | 920,646,902                            | 472,965,437          | 160,271,665    | 33,157,530                 |  |  |
| vehicles           | Level3            | 0                               | 0                   | 263,690,419                           | 1,488,326,777               | 1,301,426,942                          | 889,449,555          | 426,384,116    | 130,032,455                |  |  |
| venicies           | Level4            | 0                               | 0                   | 0                                     | 430,601,394                 | 2,121,757,969                          | 1,868,857,554        | 1,271,945,477  | <u>607,5</u> 31,232        |  |  |
|                    | Level5            |                                 | vertina r           | nileage                               | <b>Disse</b>                | Dissemination rate image for each year |                      |                |                            |  |  |
|                    |                   | 200 Converting mileage          |                     |                                       | 25,18                       |                                        |                      |                | 7,983                      |  |  |
|                    |                   | ι το ρ                          | enetratio           | on rate                               | 120.00% —                   |                                        |                      |                |                            |  |  |
|                    | Level0            | 97.64%                          | 73.19%              | 40.81%                                | 100.00%                     |                                        |                      |                | 0.02%                      |  |  |
| Passenger<br>Light | Level1            | 2.36%                           | 25.90%              | 52.57%                                | 80.00%                      |                                        |                      |                | 2.61%                      |  |  |
|                    | Level2            | 0.00%                           | 0.91%               | 5.50%                                 | 60.00%                      |                                        |                      |                | 0.14%                      |  |  |
| vehicles           | Level3            | 0.00%                           | 0.00%               | 1.12%                                 | 40.00%                      |                                        |                      |                | 0.55%                      |  |  |
| venicies           | Level4            | 0.00%                           | 0.00%               | 0.00%                                 | 0.00%                       |                                        |                      |                | 2.58%                      |  |  |
|                    | Level5            | 0.00%                           | 0.00%               | 0.00%                                 | 2015                        | 年 2020年 2025年                          | 年 2030年 2035年        | ₣ 2040年 2045年  | ⊨ 2050年 <mark>4.09%</mark> |  |  |
|                    | · · · · · ·       |                                 |                     | · · · · · · · · · · · · · · · · · · · |                             | Level0 Level                           | 1 ■ Level2 ■ Level3  | Level4 Level5  |                            |  |  |




Note: In the dissemination scenario provided this time, the dissemination rate of SAE level 5 is assumed to be 0 [%] until FY2050 because it is difficult to predict at this time.

### **B.** Set signal indication and traffic regulation information (1/2)


In order to perform more accurate simulations, the following information is set on the map data for the area to be simulated (1) signal indication information and (2) traffic regulation information in the area to be simulated are set in the map data.

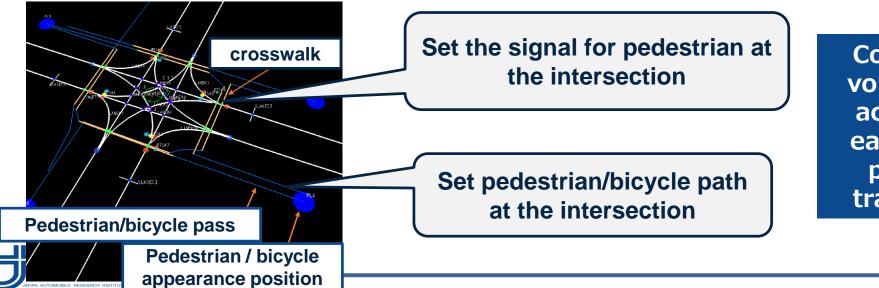
## **1**Signal indication information (include pedestrian signals)



### **2** traffic regulation information

| Type of traffic regulation     |
|--------------------------------|
| information                    |
| Vehicle closed                 |
| Prohibition outside designated |
| direction                      |
| One-way                        |
| Pause                          |
| Traffic light                  |
| Zone 30 (Max. speed 30km/h)    |

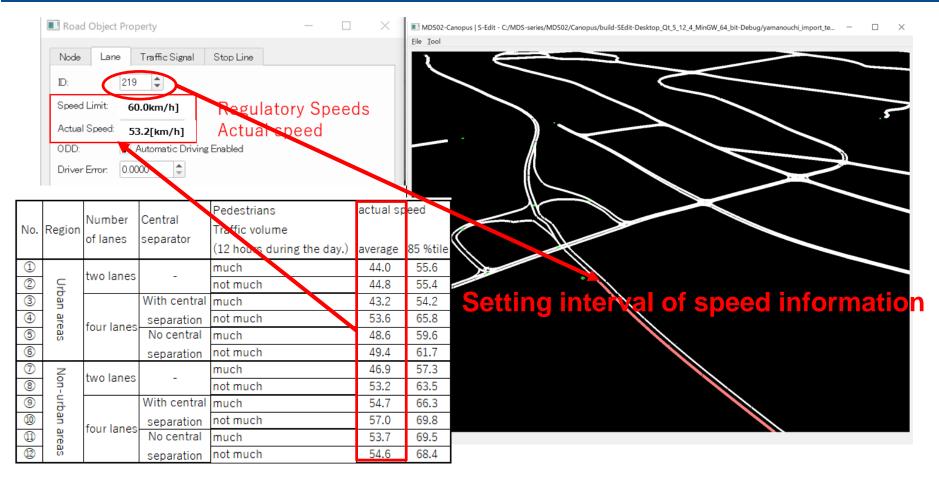





# **C.** Pedestrian and bicycle models and traffic settings

Expand the types of pedestrian accidents and establish a new bicycle behavior model to reproduce major bicycle accidents

[ Types of accidents reproduced in the simulation of this project ]


| Traffic participants | SIP Phase 1                  | SIP Phase 2 (this project)                                                      |
|----------------------|------------------------------|---------------------------------------------------------------------------------|
| Pedestrian           | Single road<br>crossing only | Single road crossing<br>+<br>Crossing signal intersection (only second party)   |
| Bicycle              | -                            | Head-on, Left turn involved,<br>and right straight accidents(only second party) |



Conducted on-site traffic volume surveys mainly at accident-prone points in each model area, and set pedestrian and bicycle traffic volumes on maps.

# **D. Set speed information**

# Set the regulatory speed (designated speed or legal speed) and actual speed on the map data



Designated speed and legal speed are set based on the actual designated speed and legal speed in each model area. The actual speed was set with reference to the "Research and Study Report on the Determination of Regulatory Speeds in Fiscal 2008".

### Simulation results



### 4. Setting up the conditions for running the simulation

(1) Reproduction of realistic traffic flow Confirmation of reproducibility of traffic flow in each model city calculated in E.

(2) Realistic reproduction of the accident situation

Reproduction of the accident occurrence situation in each model city obtained in F.

(3) Calculating the number of accidents caused by automated driving (driver assistance) systems

Using the simulation environment described in (1) and (2) above, calculate the number of accidents that occur in each model city according to the diffusion rate of automated driving (driver assistance) systems calculated in G.

(4) Estimation of accident occurrence in the model area <u>Estimates of accident occurrence in each model region, assuming that the accident</u> reduction fact Sot the simulation execution conditions E to C gions.

# Set the simulation execution conditions E. to G. for simulation execution.

(5) Estimate the num in the model regions



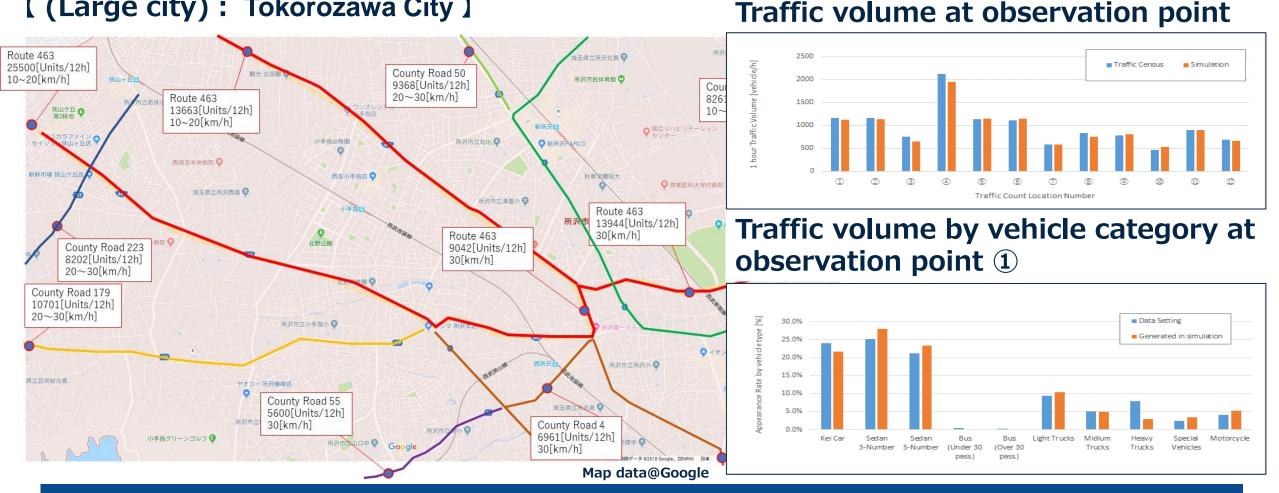
f accidents

### **5.**Confirmation of simulation results

(1) Reproduction of realistic traffic flow Confirmation of reproducibility of traffic flow in each model city calculated in E.

(2) Realistic reproduction of the accident situation <u>Reproduction of the accident occurrence situation in each model city obtained in F.</u>

(3) Calculating the number of accidents caused by automated driving (driver assistance) systems Using the simulation environment described in (1) and (2) above, calculate the number of accidents that occur in each model city according to the diffusion rate of automated driving (driver assistance) systems calculated in G.


(4) Estimation of accident occurrence in the model area <u>Estimates of accident occurrence in each model region, assuming that the accident</u> <u>reduction factors obtained for the model cities are applicable to all model regions.</u>

(5) Estimate the number of accidents nationwide by summing the number of accidents in the model regions



### 1 Reproduction of realistic traffic flow

#### **Confirmation of reproducibility of traffic flow in each model city calculated in E.** (Large city): Tokorozawa City Traffic volume at observation point

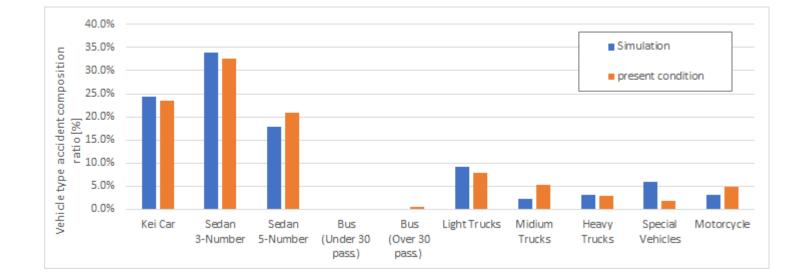


Confirmed that the simulation reproduced the traffic flow that reflected the characteristics of the 1hour daytime traffic volume at major points within the simulation area (error less than 10 [%]).

Source: Ministry of Land, Infrastructure, Transport and Tourism: National Survey on Road and Street Traffic Conditions\_General Traffic Volume Survey

15

### **2**Realistic reproduction of the accident situation

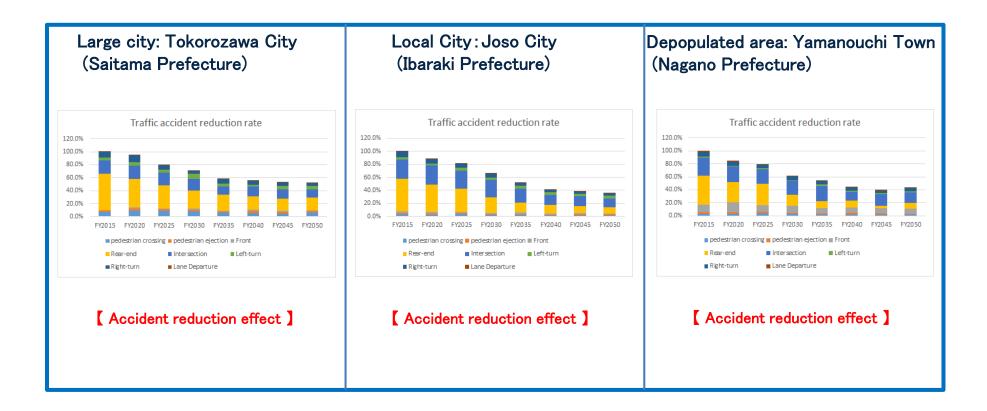

Map data@Google

#### [ (Large city) : Tokorozawa City ]



#### Source]Saitama Prefectural Police: Incident Occurrence Map

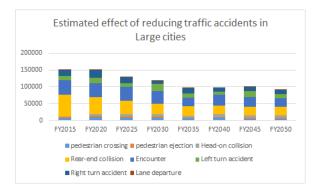




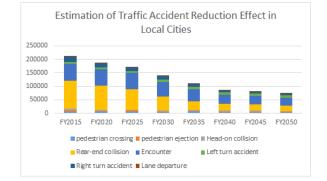

Note: The simulation reproduces on a map the main trunk lines, branch lines, and daily roads around the station.

Confirmation of validity by comparing the simulation results with accident locations indicated by traffic accident statistics (2015-2017)

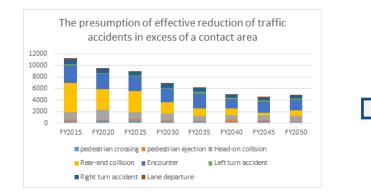
#### **③Calculating the number of accidents caused by automated driving** (driver assistance) systems


Simulations were run for each model region, and the effects of reducing traffic accidents were estimated for each.





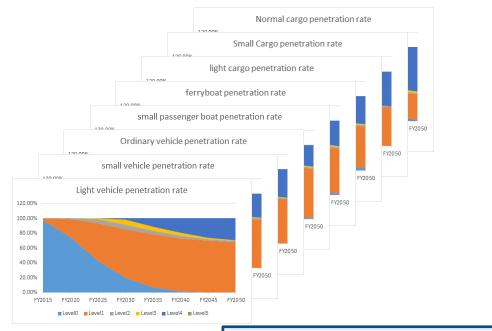

#### **④Estimation of accident occurrence in the model area**


#### Large city: Tokorozawa City



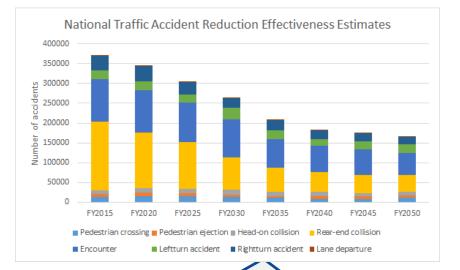
#### Local City: Joso City




#### Depopulated area: Yamanouchi Town



 Accident reduction coefficients were calculated from the simulation results by diffusion scenario and accident type for each model region.
 The calculated accident reduction coefficients were used to estimate the effect of reducing the number of accidents.


#### **⑤Estimate the number of accidents nationwide by summing the number of accidents** in the model regions

Based on the reduction effect in each model region, the effect of reducing traffic accidents on a national scale was estimated based on national traffic accident statistics data.



#### [ Scenario of automated driving diffusion (national average) ]

#### [ Effectiveness in reducing accidents on a nationwide scale ]



The reduction effect of the spread of the system can be confirmed. The reduction effect is small for pedestrian crossing and collision accidents. This is thought to be due to the fact that the penetration rate of Level 3 and above is low, and that the automated driving system model implemented in this study assumes only autonomous sensors and cannot respond to sudden jumps out of sight.



### Japan Automobile Research Institute