

FY2020 Year-end report

Weather Forecast

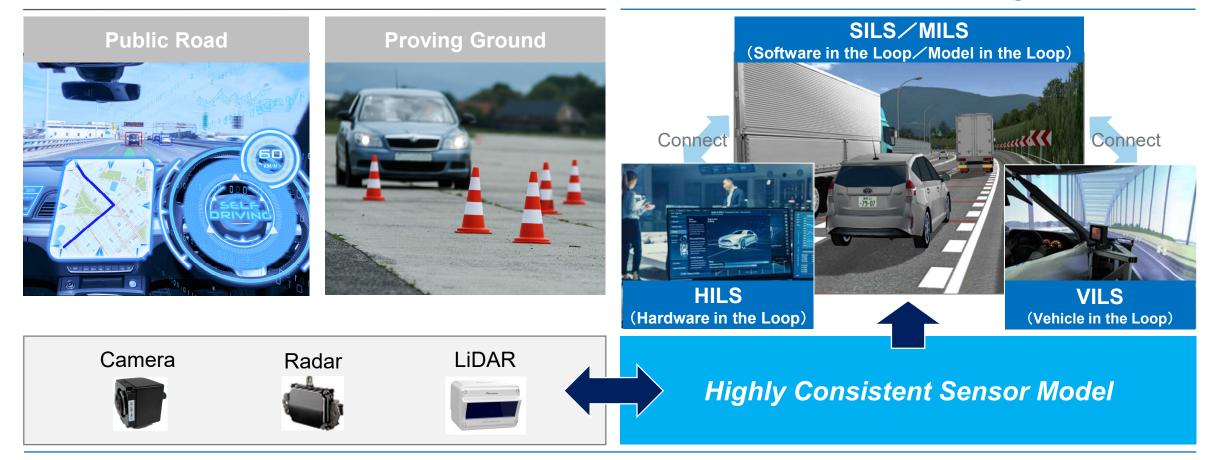


For Validation & Verification Methodology

\* AD : Automated Driving DIVP<sup>®</sup> Consortium

# Index

- Project Design
- FY2020 outcome
- Virtual-PG / CG\*
- User review
- International Cooperation and promotions


About the Cross-ministerial Strategic Innovation Promotion Program (SIP) This is a program for achieving science, technology and innovation as a result of the Council for Science, Technology and Innovation exercising its headquarters function to accomplish its role in leading science, technology and innovation beyond the framework of government ministries and traditional disciplines. The program strives to promote research and development in a seamless manner from the basic research stage to the final outcome by endeavoring to strengthen cooperation among industry, academia and government under the strong leadership of the Program Director (PD) **Project Design** 

*Highly Consistent Sensor Modeling* is a key enabler of virtual validation for AD/ADAS safety assurance. HCSM indicates environmental, ray tracing, and sensor models.

# Motivation : Highly Consistent Sensor Modeling (HCSM)

Real vehicle test



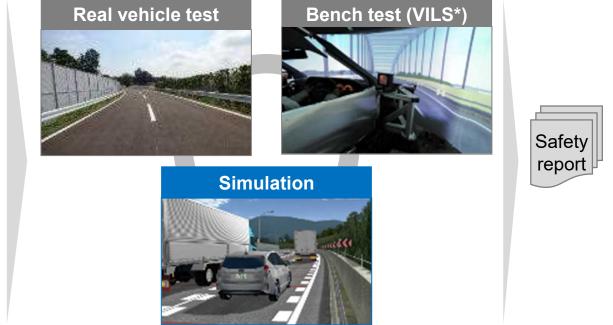


Source : Kanagawa Institute of technology, MITSUBISHI PRECISION CO., LTD., DENSO Corporation, Pioneer Smart Sensing Innovations Corporation, Hitachi Automotive Systems, Ltd.

DIVP<sup>®</sup> Consortium

# Simulation is the Key for total validation flame work for AD-Safety assurance

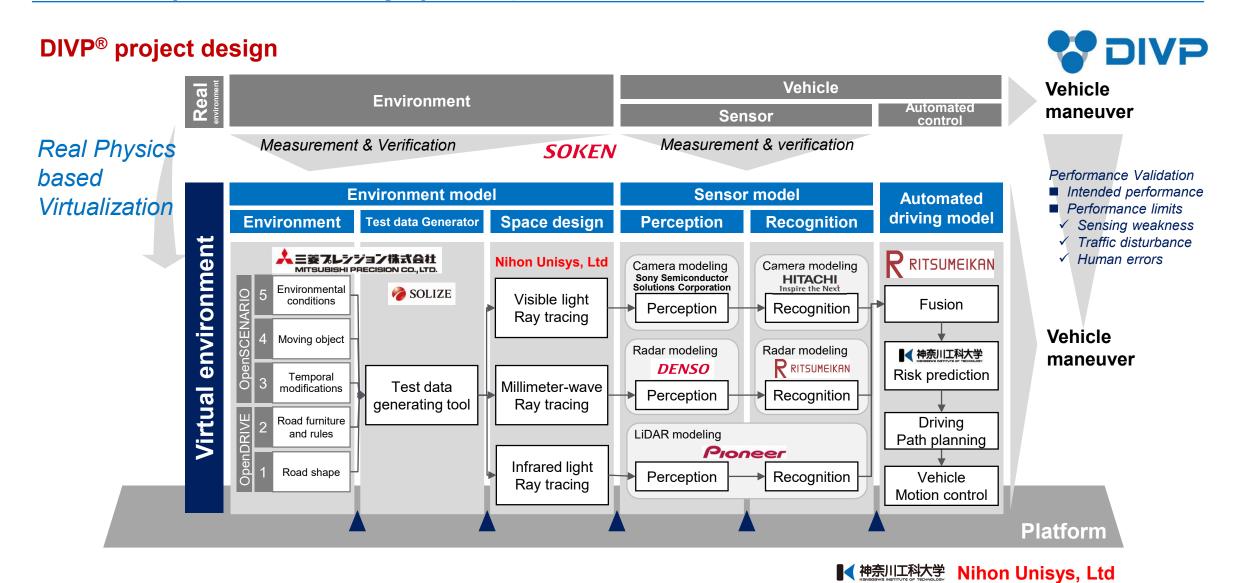
# AD safety validation methodology


## **Traffic environment conditions**

Generating test conditions by combining various conditions

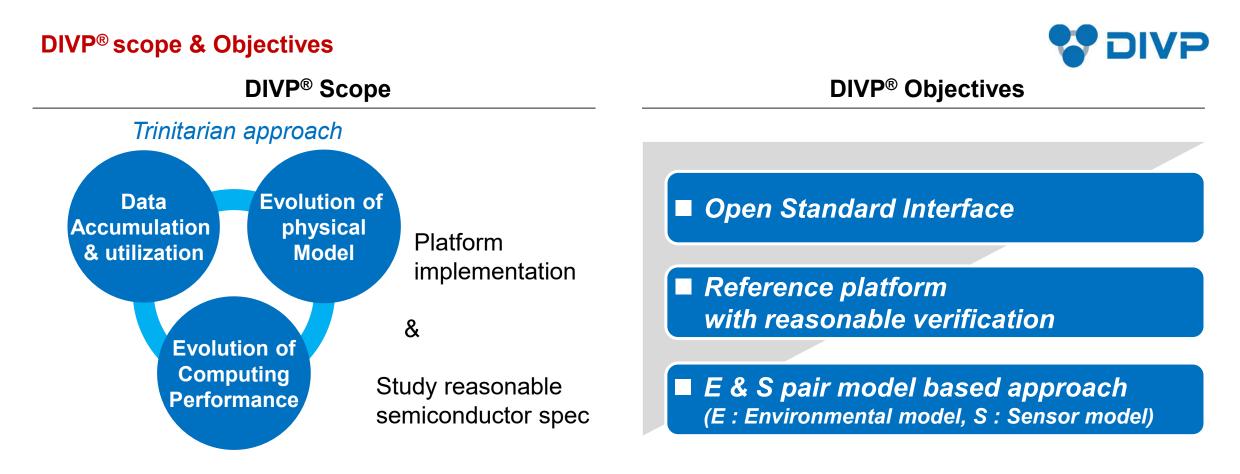
| 0101000 🔶 🕅         | Layer6 | Digital information                   |
|---------------------|--------|---------------------------------------|
| $\Box\dot{\dot{a}}$ | Layer5 | Environmental conditions              |
|                     | Layer4 | Moving<br>objects                     |
|                     | Layer3 | Temporal<br>modifications &<br>events |
| င့္ရင္း<br>ကို      | Layer2 | Road furniture and rules              |
|                     | Layer1 | Road shape                            |

# Total validation test system


■ Test management combining various experimental methods



Consistency & numbers of available Environment conditions would be a key for Simulation implementation into the AD-Safety validation methodology

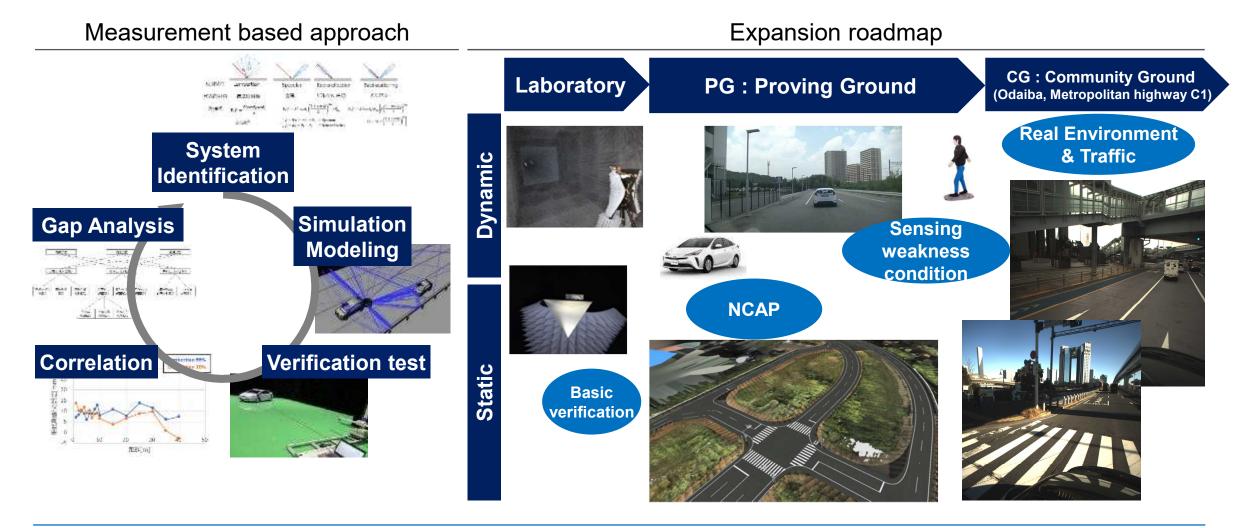

\* VILS : Vehicle in the Loop Source: Mitsubishi Precision Co. Ltd. DIVP® Consortium

# Designed project architecture, Precisely Duplicate from Real to Virtual, and Verification of consistency with real testing by 10-exparts as DIVP<sup>®</sup> Consortium

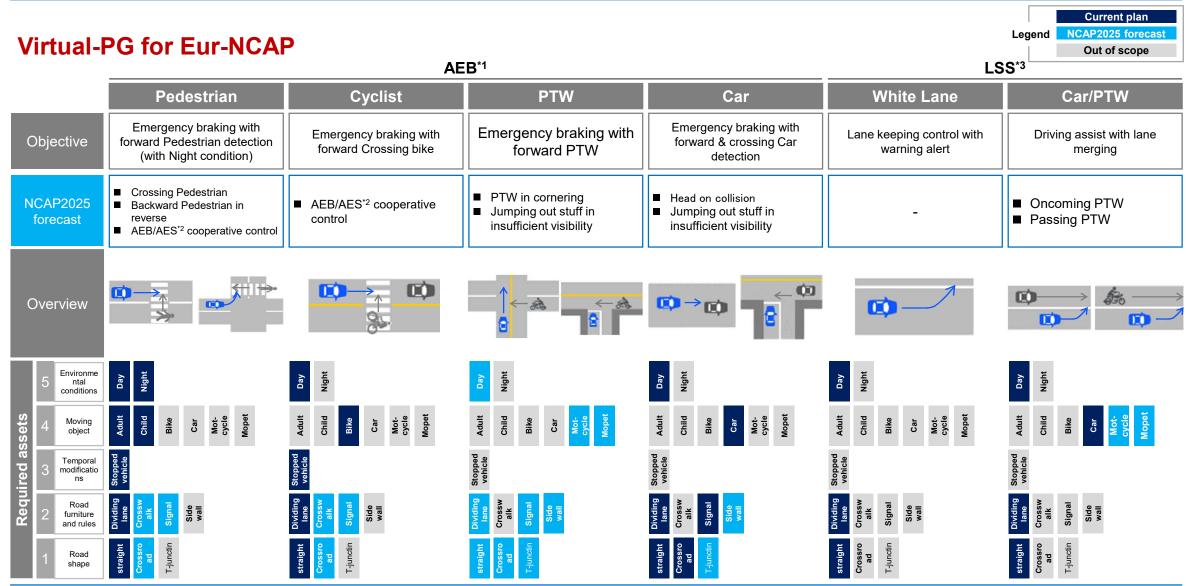


FY2020 Year-end report 6

# DIVP<sup>®</sup> scope covers "Physical Model" & "Computing Performance" in Trinitarian approach

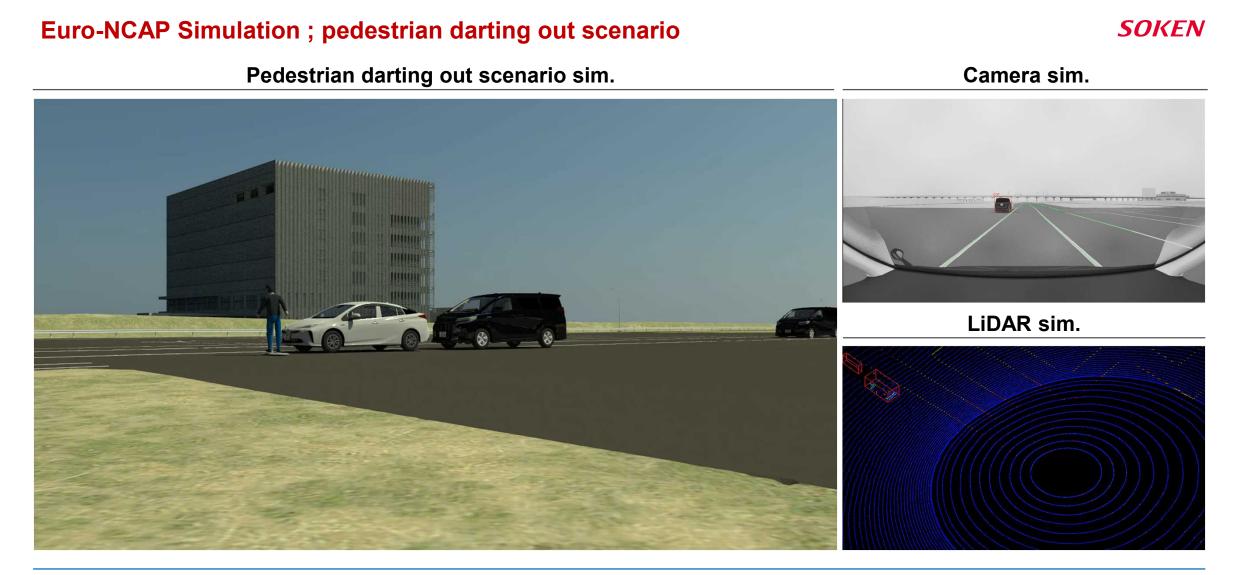



With project outcome DIVP<sup>®</sup> is to Improve Simulation based AD Safety validation for Consumer acceptable Safety assurance


# FY2020 Outcome

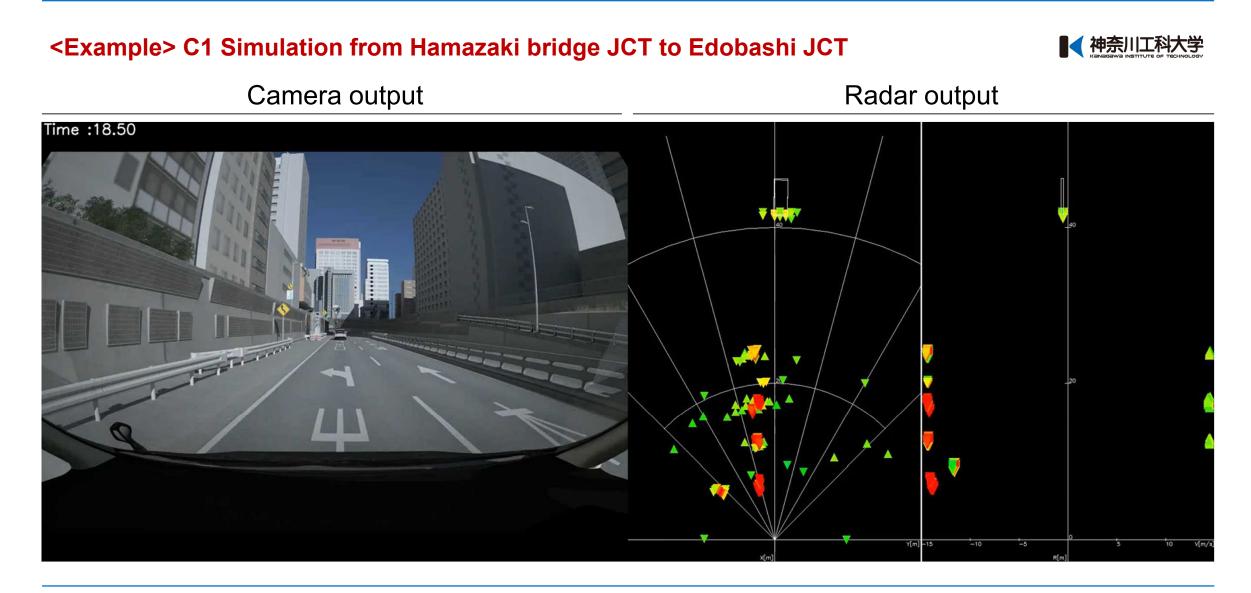
Modeling the sensing physics with measurement verification bases, and expanding validation field from Static Labo-condition to Dynamic Real condition as CG

## Validation framework




# Duplicated NCAP protocols and Structured & planed asset road map for NCAP2025



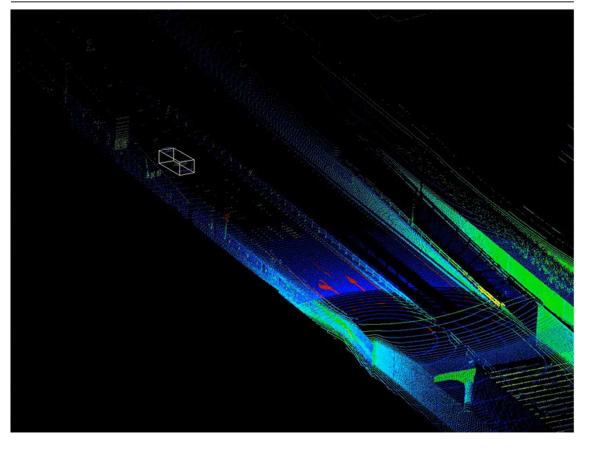

\*1 AEB : Automatic Emergency Braking, \*2 AES : Automatic Emergency Steering, \*3 LSS : Lane Support System / PTW : Powered Two Wheeler Source : EuroNCAP2025(https://cdn.euroncap.com/media/30700/euroncap-roadmap-2025-v4.pdf) DIVP® Consortium

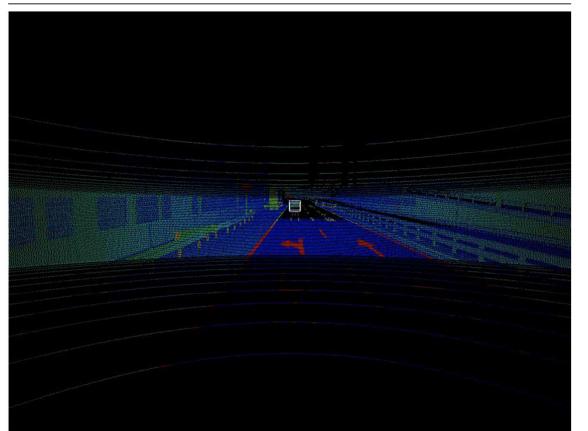
# Duplicate Euro-NCAP AEB Pedestrian protocol in Virtual-PG & expanding toward NCAP2025



Source : Kanagawa Institute of technology DIVP<sup>®</sup> Consortium

# Duplicated Tokyo metro highway C1 & Odaiba as Virtual Community Ground for sensing weakness validation in Real traffic environmental conditions





Source : Kanagawa Institute of technology DIVP<sup>®</sup> Consortium

# Duplicated Tokyo metro highway C1 & Odaiba as Virtual Community Ground for sensing weakness validation in Real traffic environmental conditions

# <Example> C1 Simulation from Hamazaki bridge JCT to Edobashi JCT

LiDAR output





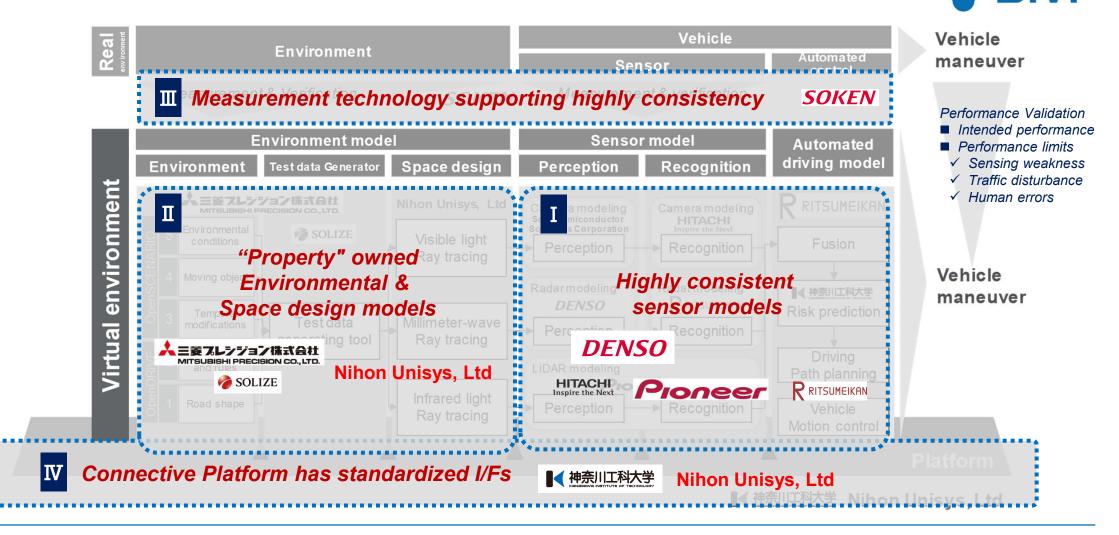
LiDAR output

Source : Kanagawa Institute of technology DIVP<sup>®</sup> Consortium 神奈川工科大学

# Duplicated Tokyo metro highway C1 & Odaiba as Virtual Community Ground for sensing weakness validation in Real traffic environmental conditions

### <Example> Simulation results in Odaiba




Source : Kanagawa Institute of technology DIVP® Consortium

FY2020 Year-end report 14



# DIVP<sup>®</sup> output Highly consistent <sup>I</sup>Sensor & <sup>I</sup>Environmental models with <sup>II</sup>Sensing physics measurement bases, onto <sup>IV</sup>Connective Platform has standard I/Fs

## FY20 Outcome



# DIVP<sup>®</sup> is the only simulation with Highly Consistent Environment & Sensor "Pair modeling"

### **Benchmark result of Camera**

| Classification | Phenomena                                                    | DIVP®           | IPG<br>CarMaker<br>9.0 | Siemens<br>PreScan<br>2020.1 | VIRES VTD<br>2.2.0 | ANSYS<br>VRX<br>R2.2020 |   |
|----------------|--------------------------------------------------------------|-----------------|------------------------|------------------------------|--------------------|-------------------------|---|
| Source         | General light source(vehicle lamp,<br>etc.)                  | Ø               | 0                      | 0                            | 0                  | 0                       |   |
| Source         | Radiance of solar                                            | Ø               | 0                      | 0                            | 0                  | 0                       |   |
| Source         | Radiance of sky                                              | Ø               | ×                      | Δ                            | 0                  | Δ                       |   |
| Source         | Indirect light                                               | Ø               | 0                      | ×                            | ×                  | 0                       |   |
| Optics         | Reflection, diffusion, transmission<br>on the object surface | Ø               | Δ                      | Δ                            | Δ                  | 0                       | 2 |
| Optics         | Aging of the object surface                                  | ©(asphalt)      | ×                      | 0                            | Δ                  | *                       |   |
| Optics         | Fouling                                                      | ×               | Δ                      | Δ                            | ×                  | *                       |   |
| Propagation    | Scattering(Participating medium)                             | O(fog)          | ×                      | ×                            | ×                  | 0                       |   |
| Sensor         | Effect of vehicle dynamics                                   | Ø               | Δ                      | Δ                            | Δ                  | Δ                       | 3 |
| Sensor         | Effect of temperature characteristic                         | ×               | ×                      | ×                            | ×                  | 0                       |   |
| Sensor         | Aging of the sensor                                          | ×               | ×                      | ×                            | ×                  | ×                       |   |
| Sensor         | Lens distortion                                              | 0               | 0                      | 0                            | 0                  | 0                       |   |
| Sensor         | Lens flare                                                   | ×               | ×                      | ×                            | ×                  | ×                       |   |
| Sensor         | Ghost                                                        | ×               | ×                      | ×                            | ×                  | ×                       |   |
| Sensor         | Fouling(windshield)                                          | O<br>(raindrop) | Δ                      | ×                            | ×                  | ×                       | J |

■ < 神奈川工科大学

| ©: supported                      | (with actual verification) |  |  |  |
|-----------------------------------|----------------------------|--|--|--|
| <ul> <li>supported</li> </ul>     | (with no verification)     |  |  |  |
| $\triangle$ : partially supported |                            |  |  |  |
| ×: unsupporte                     | d                          |  |  |  |
| X:investigatin                    | g                          |  |  |  |

#### Items that shows the superiority of DIVP®

- (1) Only DIVP<sup>®</sup> is to verify the actual machine.
- (2) CarMaker only supports reflection and transmission,

Prescan only supports reflection,

- VTD unsupports a moving objects.
- VRX partially supports radiance of sky.
- Only DIVP<sup>®</sup> fully supports vehicle behavior. 3

X Limit the range that can be completed within 2020 by prioritizing DIVP® functions based on frequency and criticality DIVP<sup>®</sup> Consortium

# DIVP<sup>®</sup> is the only simulation with Highly Consistent Environment & Sensor "Pair modeling"

## **Benchmark result of Radar**

| Classification | Phenomena                                                | DIVP®       | IPG<br>CarMaker<br>9.0 | Siemens<br>PreScan<br>2020.1 | VIRES<br>VTD<br>2.2.0 | ANSYS<br>VRX<br>R.2020 |   |
|----------------|----------------------------------------------------------|-------------|------------------------|------------------------------|-----------------------|------------------------|---|
| Source         | Other vehicle light<br>source(interference)              | Ø           | ×                      | ×                            | ×                     | Δ                      | 2 |
| Optics         | Reflection, diffusion transmission on the object surface | Ø           | Δ                      | Δ                            | Δ                     | Δ                      | 3 |
| Optics         | Aging of the object surface                              | O(asphalt)  | Δ                      | ×                            | ×                     | ×                      | 4 |
| Optics         | Fouling                                                  | ©(raindrop) | Δ                      | ×                            | ×                     | Δ                      |   |
| Optics         | Phase/polarization change during reflection              | Ø           | 0                      | ×                            | ×                     | ×                      |   |
| Propagation    | Diffraction                                              | ×           | ×                      | ×                            | ×                     | *                      | 5 |
| Propagation    | Multi reflection/transmission                            | Ø           | Δ                      | Δ                            | ×                     | ×                      |   |
| Propagation    | Scattering(attenuation), interference<br>in space        | Ø           | 0                      | 0                            | ×                     | ×                      |   |
| Propagation    | Doppler                                                  | Ø           | 0                      | 0                            | ×                     | 0                      |   |
| Propagation    | Micro-Doppler                                            | Ø           | 0                      | 0                            | ×                     | *                      | 6 |
| Sensor         | Own light source(reproduction of modulation method)      | Ø           | 0                      | 0                            | ×                     | 0                      |   |
| Sensor         | Effect of vehicle dynamics                               | Ø           | Δ                      | Δ                            | Δ                     | Δ                      |   |
| Sensor         | Effect of temperature characteristic                     | ×           | ×                      | ×                            | ×                     | ×                      |   |
| Sensor         | Aging of the sensor                                      | ×           | ×                      | ×                            | ×                     | ×                      |   |
| Sensor         | Fouling                                                  | ×           | ×                      | ×                            | ×                     | ×                      |   |
| Sensor         | Internal reflection                                      | ×           | ×                      | ×                            | ×                     | ×                      |   |



©: supported (with actual verification) ○: supported (with no verification) △: partially supported ×: unsupported ※:investigating

#### Items that shows the superiority of DIVP®

- Only DIVP<sup>®</sup> is to verify the actual machine.
- ② Only DIVP<sup>®</sup> is to support interference.
- 3 Only DIVP<sup>®</sup> supports reflection, scattering and transmission
- ④ Only DIVP<sup>®</sup> responds to the effects of extraneous matter and phase / polarization changes during reflection
- (5) Only DIVP<sup>®</sup> supports multiple reflection / transmission
- 6 Only DIVP<sup>®</sup> supports Effect of Vehicle dynamics

X Limit the range that can be completed within 2020 by prioritizing DIVP® functions based on frequency and criticality

DIVP<sup>®</sup> Consortium

## **Benchmark result of LiDAR**

| Classification |                                                              | DIVP®       | IPG<br>CarMaker<br>9.0 | Siemens<br>PreScan<br>2020.1 | VIRES<br>VTD<br>2.2.0 | ANSYS<br>VRX<br>R.2020 |   |
|----------------|--------------------------------------------------------------|-------------|------------------------|------------------------------|-----------------------|------------------------|---|
| Source         | Other vehicle light<br>source(interferences)                 | ×           | ×                      | ×                            | ×                     | Δ                      |   |
| Source         | Other source(halogen lamp)                                   | ×           | ×                      | ×                            | ×                     | $\bigtriangleup$       |   |
| Source         | Radiance of solar                                            | Ø           | ×                      | ×                            | ×                     | $\triangle$            |   |
| Source         | Radiance of sky                                              | Ø           | ×                      | ×                            | ×                     | $\triangle$            |   |
| Optics         | Reflection, diffusion, transmission on<br>the object surface | Ø           | Δ                      | Δ                            | Δ                     | Δ                      |   |
| Optics         | Aging of the object surface                                  | ©(asphalt)  | ×                      | ×                            | ×                     | ×                      | 2 |
| Optics         | Fouling                                                      | ©(raindrop) | ×                      | ×                            | ×                     | ×                      |   |
| Propagation    | Multi reflection/transmission                                | Ø           | Δ                      | ×                            | Δ                     | ×                      |   |
| Propagation    | The cross sectional area of a laser<br>beam                  | Ø           | 0                      | *                            | *                     | ×                      |   |
| Propagation    | Scattering in space(attenuation)                             | Ø           | ×                      | 0                            | ×                     | $\bigtriangleup$       |   |
| Sensor         | Own light source                                             | Ø           | ×                      | ×                            | ×                     | 0                      |   |
| Sensor         | Scanning                                                     | Ø           | ×                      | ×                            | ×                     | 0                      | 3 |
| Sensor         | Effect of vehicle dynamics                                   | Ø           | Δ                      | Δ                            | Δ                     | $\triangle$            |   |
| Sensor         | Effect of temperature characteristic                         | ×           | ×                      | ×                            | ×                     | ×                      |   |
| Sensor         | Aging of the sensor                                          | ×           | ×                      | ×                            | ×                     | ×                      |   |
| Sensor         | Fouling                                                      | ©(raindrop) | ×                      | ×                            | ×                     | ×                      | Æ |



©: supported (with actual verification) ○: supported (with no verification) △: partially supported ×: unsupported ※:investigating

#### Items that shows the superiority of DIVP®

- ① Only DIVP<sup>®</sup> is to verify the actual machine.
- ② Only DIVP<sup>®</sup> supports the radiance of sunlight, radiance of sky light, reflection / scattering / transmission on the object surface, influence of deterioration, attached matter, multiple reflection / transmission
- ③ Only DIVP<sup>®</sup> responds to the effects of its own light source, scanning and vehicle behavior
- ④ Only DIVP<sup>®</sup> responds to the effects of sensor deposits

**X** Limit the range that can be completed within 2020 by prioritizing DIVP<sup>®</sup> functions based on frequency and criticality DIVP<sup>®</sup> Consortium

# Toward social implementation on FY22, DIVP<sup>®</sup> will study the validation process utilizing the Sim-PF and expand the scope to constructing Data Base for realize Virtual-PG/CG

## **Further schedule**



 Road map toward social implementation

 Improving the performance and processing of Sim-PF for social implementation toward FY2022

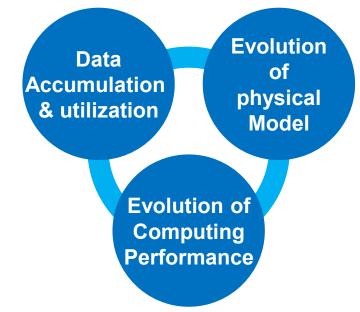
 ~FY2020
 FY2021

 From April 2022

 Start of social implementation

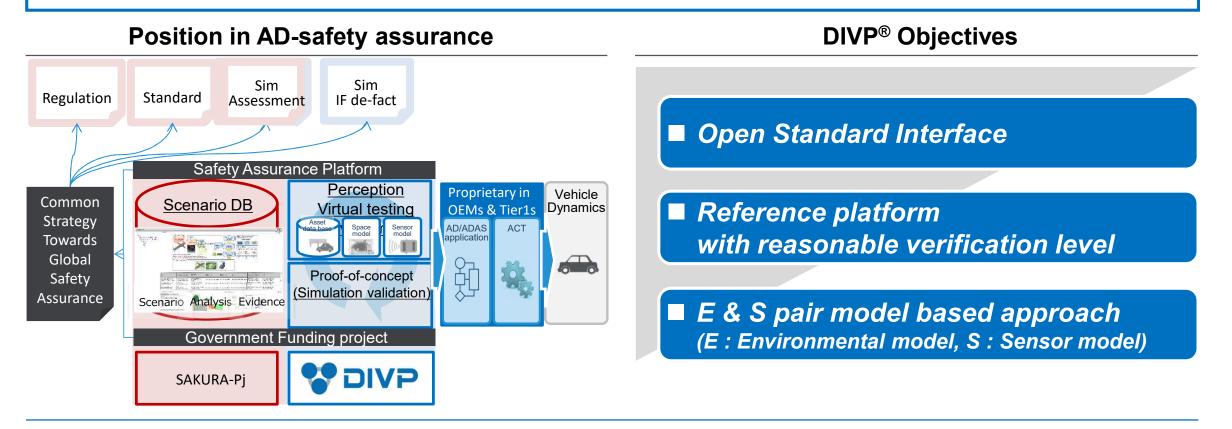
 POC and Completion of the Odaiba model

 Continuous development to maintain the Sim-PF performance & DB construction


Study the Simulation based validation process

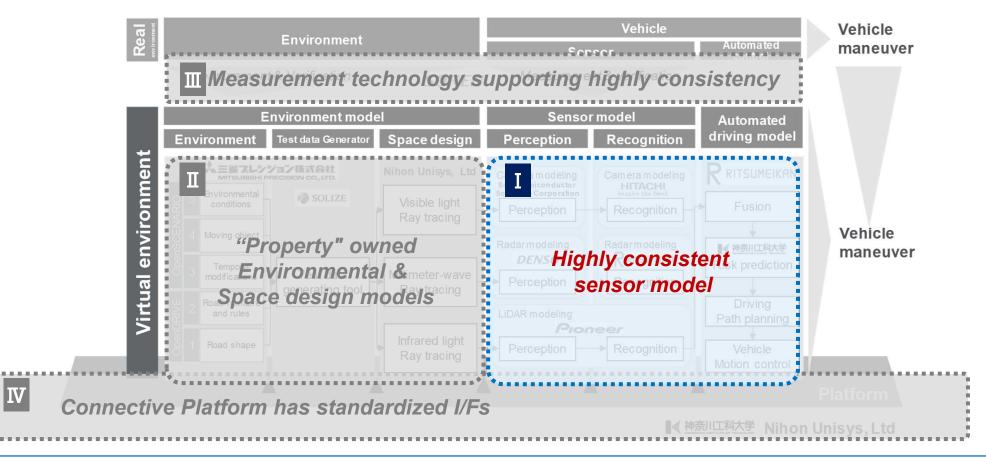
Sensing physics measurement bases Precise modeling

and basic research with consistency verification


#### Research scope expansion

DIVP<sup>®</sup> expand the scope to Database(DB) construction for realize AD safety validation system with various drive scene in Virtual-PG/CG



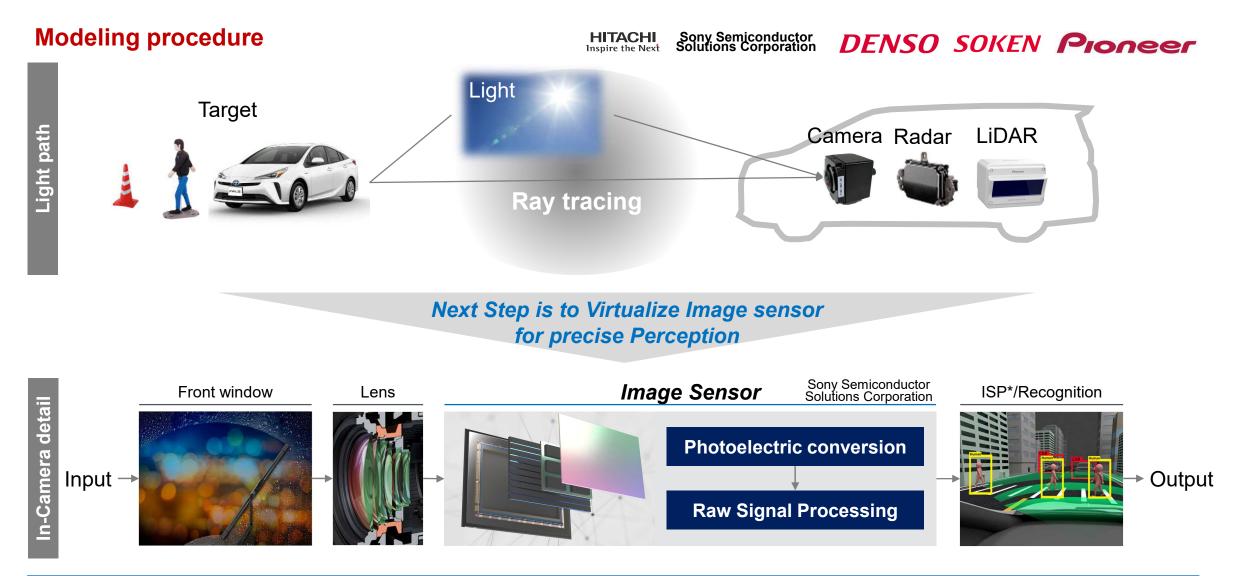

### **Summary**

- DIVP<sup>®</sup> in SIP-adus believes that sensing domain based approach leads AD/ADAS to safer mobility society.
- DIVP<sup>®</sup> in SIP-adus will contribute to the standardization of I/F, reference modeling procedure with respective global activities.

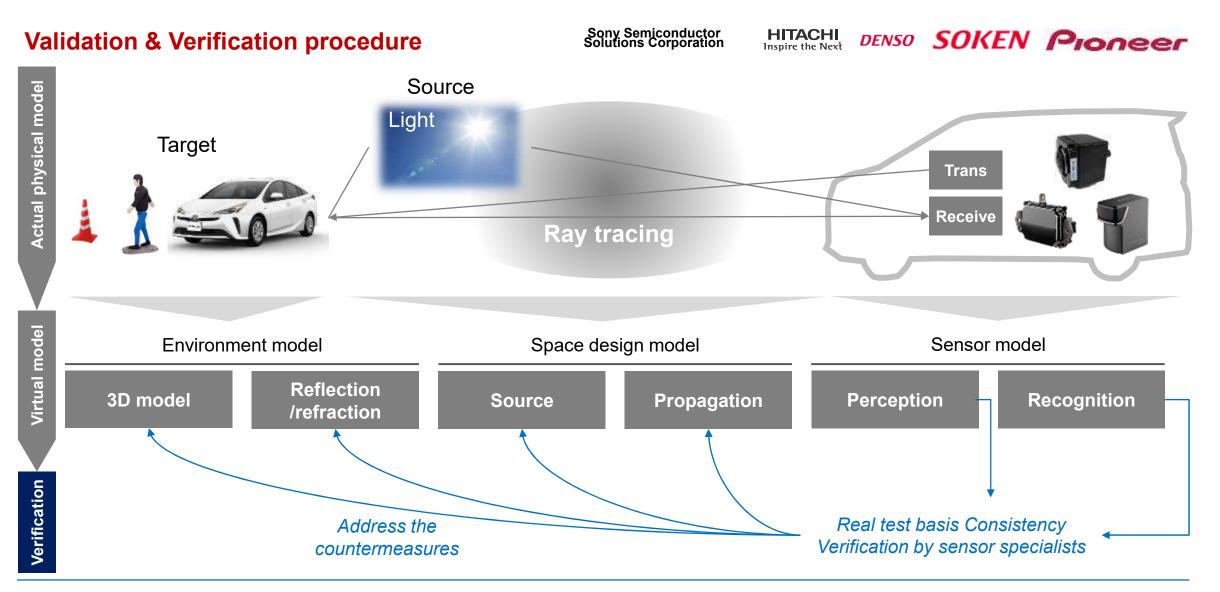


# FY2020 outcome

# FY2020 outcome



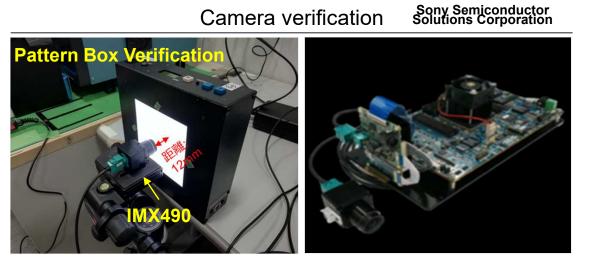

# Sensing physics precise modeling with real test validation & verification


## Modeling procedure

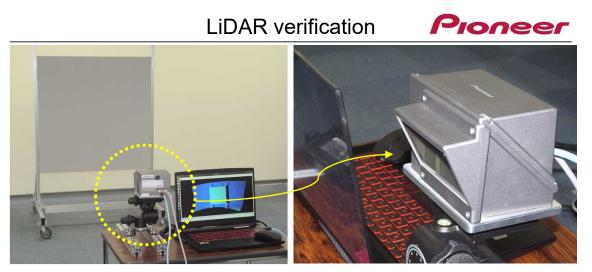
| Steps | Action Details                                                                                                                         | Implementation steps                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Step1 | <ul> <li>Real physics modeling</li> <li>✓ Mathematical modeling of physical phenomena in the</li> </ul>                                | Understanding of the principles of each sensor              |
|       | real world<br>✓ Interface design                                                                                                       | Function allocation of each part Interface design           |
| Step2 | Real physics based simulation model                                                                                                    | Design of the simulation model                              |
|       | <ul> <li>Simulation modeling of mathematical models</li> <li>Designing competitive advantages</li> </ul>                               | Design the "Highly consistent sensor<br>modeling" procedure |
| Step3 | Verification & Validation                                                                                                              | Basic operation verification                                |
|       | <ul> <li>Verification of consistency between Virtual and Real</li> <li>Verified modeling-based extrapolability verification</li> </ul> | Extended operation verification                             |

# Investigated modeling units and Interfaces based on light path from source to sensor output, and defined Environmental, Space design and Sensor perception & recognition models




# Verification of consistency between Real vs Virtual, sensor supplier as a sensor specialist will evaluate sensor output and address the countermeasures onto suspicious modules




Source : DENSO, INC, HitachiAutomotiveSystems, INC, PIONEER SMART SENSING INNOVATIONS CORPORATION DIVP® Consortium

# As a 1<sup>st</sup> step, each sensor verified with Simple condition in Labo base

### **Basic verification**

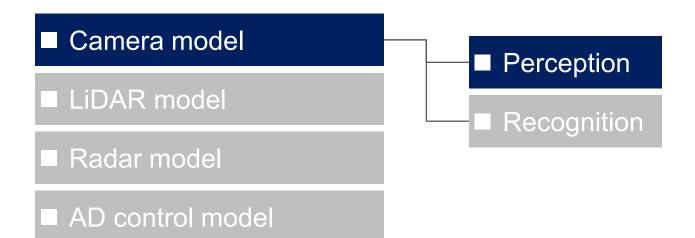


### Radar verification **DENSO SOKEN**




#### Vehicle verification

### SOKEN

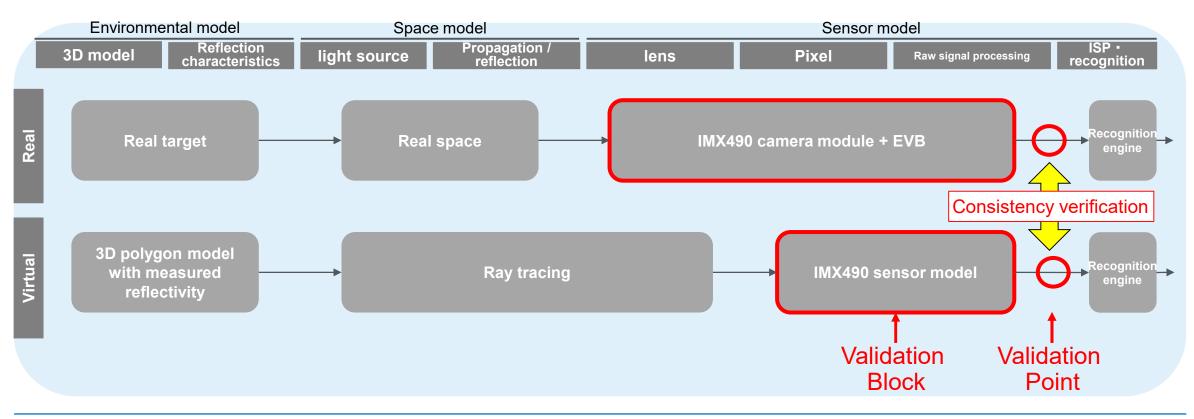



Source : Sony Semiconductor Solutions Corporation, DENSO Corporation, Pioneer Smart Sensing Innovations Corporation, SOKEN, INC DIVP® Consortium

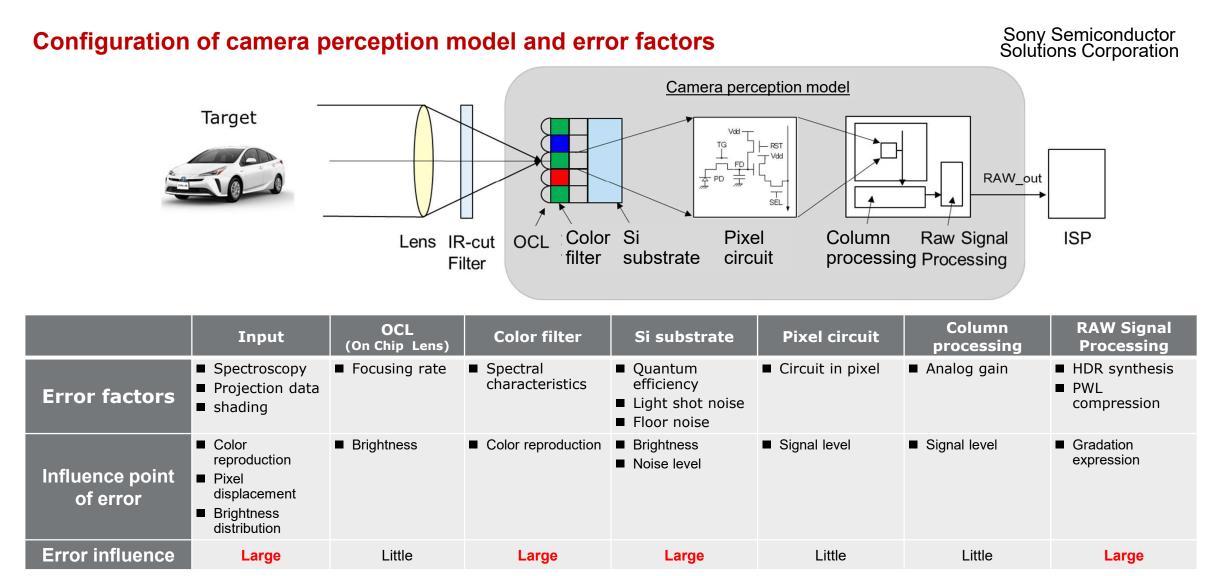


FY2020 Year-end report 26

# Highly consistent sensor model




[Camera consistency verification] By comparing and verifying the perception output of the camera, the scenes and the places where the differences occur are identified, and the causes are clarified to rotate the cycle from consistency verification to improvement


### **Overview of consistency verification**

Sony Semiconductor Solutions Corporation

- Using the IMX490 sensor, compare the output result of the sensor model with the actual unit shooting data
- By comparing data, clarify the scenes and places where differences occur, and their causes



# [Camera consistency verification] Extract the factors that affect the verification of consistency and proceed with the validation of consistency based on these.

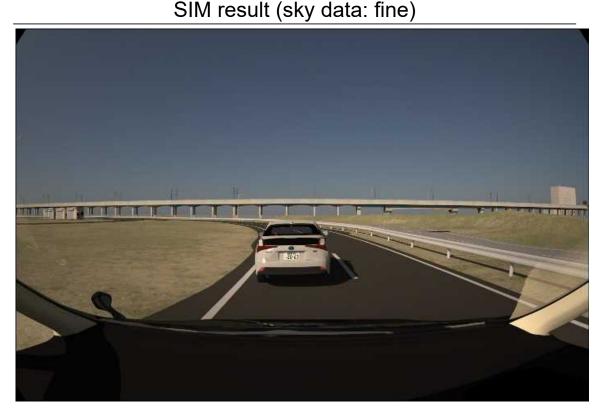


# [Camera consistency verification] Designing a verification method that compares the signal levels starting from a known object

## **Consistency verification procedure**

Sony Semiconductor Solutions Corporation

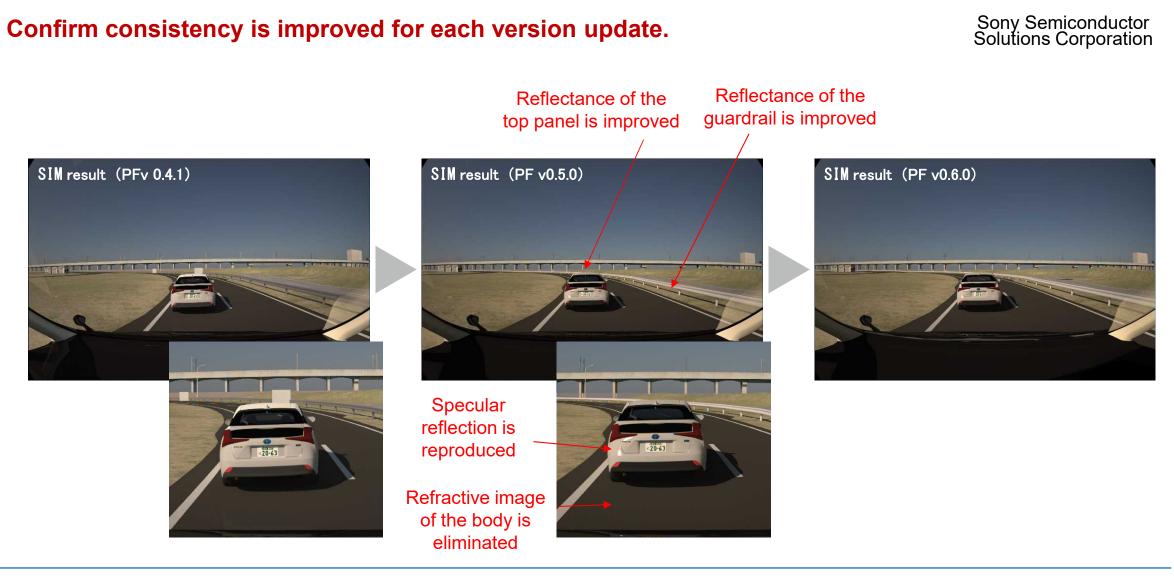
- Verification process
  - 1 Indoor (studio) validation
    - Verification using white plates
      - Confirmation by in-plane uniform level subjects
    - Verification using gray charts and color charts
      - Confirmation of contrast and color reproducibility
  - ② Outdoor validation
    - Actual environment scenes and weakness factor scenes
- Verification method
  - Histogram comparison
    - Extract for each whole screen or area (image height, color, distance, subject)
    - Comparison of mean (Signal), variation (Noise), and distribution shape
  - Analyze factors and provide feedback from areas with large differences.


According to the validation, the difference between SIM and actual data was about 20%, Therefore, the effectiveness of Camera performance validation is confirmed.

## **Camera Simulation Results\***

Sony Semiconductor Solutions Corporation




#### Result of actual camera



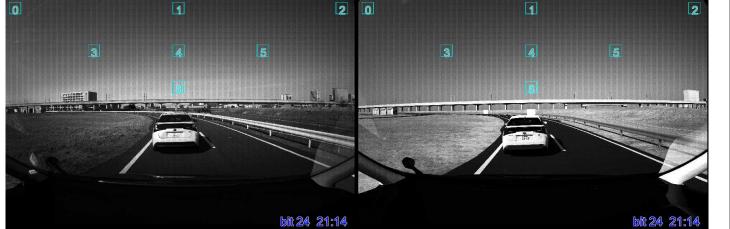
# Mostly same Brightness

\* 8 bits in 24 bits are displayed. Source : Sony Semiconductor Solutions Corporation, SOKEN, INC DIVP® Consortium

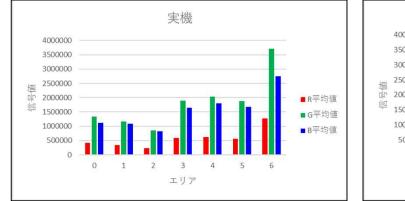
# **Results of basic consistency verification**

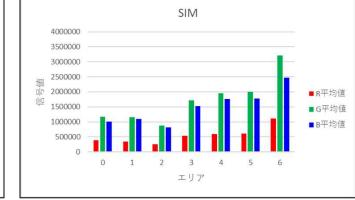


# Source : Sony Semiconductor Solutions Corporation $\mathsf{DIVP}^{\circledast}$ Consortium


# Sky Consistency Validation Results: Confirm high-level consistency

Sony Semiconductor Solutions Corporation


Image acquired on actual camera


Simulation (SIM) result

### Consistency of sky areas (Sim/Act)







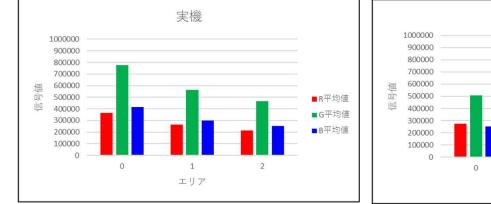


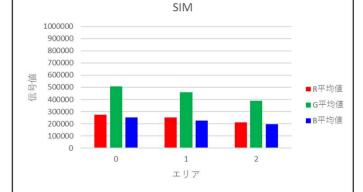
| Pixel | Ratio average<br>(SIM/Act) |
|-------|----------------------------|
| R     | 0.98                       |
| G     | 0.97                       |
| В     | 0.96                       |

Source : Sony Semiconductor Solutions Corporation DIVP® Consortium

# Asphalt Consistency Validation Results: Confirm high-level consistency

Sony Semiconductor Solutions Corporation

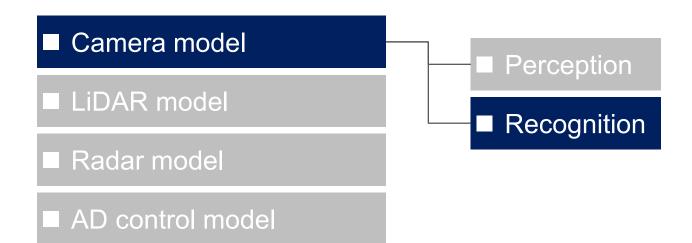

Image acquired on actual camera


#### Simulation (SIM) result

### Consistency of sky areas (Sim/Act)










| Pixel | Ratio average<br>(SIM/Act) |
|-------|----------------------------|
| R     | 0.90                       |
| G     | 0.77                       |
| В     | 0.71                       |

Source : Sony Semiconductor Solutions Corporation DIVP<sup>®</sup> Consortium

# Highly consistent sensor model



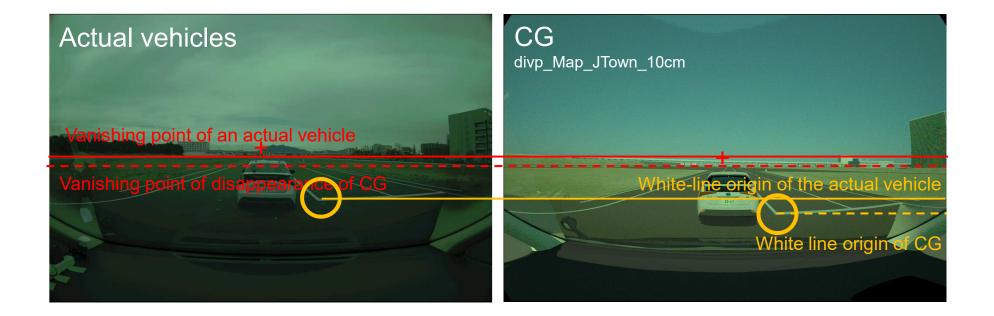
# Simulation based on a mathematical model, Verify the equivalence by comparing the actual sensor output and the simulation output.

| Modeling approa<br>Steps | ch<br>Item                                                                                                                              | Procedure                                   | HITACHI<br>Inspire the Next |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|
|                          | <ul> <li>Real physics modeling</li> <li>✓ Mathematical modeling of real-world physical phenomena</li> <li>✓ Interface design</li> </ul> | Grasp of principles<br>for each sensor      |                             |
| Step0                    |                                                                                                                                         | Interface design                            |                             |
|                          | <ul> <li>✓ Simulation based on a mathematical model</li> </ul>                                                                          | Simulation model design                     |                             |
| Step1                    | <ul> <li>simulation model check</li> <li>Check the interface</li> </ul>                                                                 | Combination verification                    |                             |
|                          | <ul> <li>Verification of recognition model</li> </ul>                                                                                   | Prior verification                          |                             |
| Step2<br>Step3           | <ul> <li>Verification &amp; Validation : Under Normal Condition</li> <li>✓ Verify the equivalence between Real and Virtual</li> </ul>   | Basic verification                          |                             |
| Step4                    | <ul> <li>Verification &amp; Validation : Under Bad Condition</li> <li>✓ Verify the equivalence between Real and Virtual</li> </ul>      | Verification<br>w/ recognition error factor |                             |
| Step5                    | <ul> <li>Verification &amp; Validation</li> <li>✓ Verification with changed parameter</li> </ul>                                        | Extended verification                       |                             |

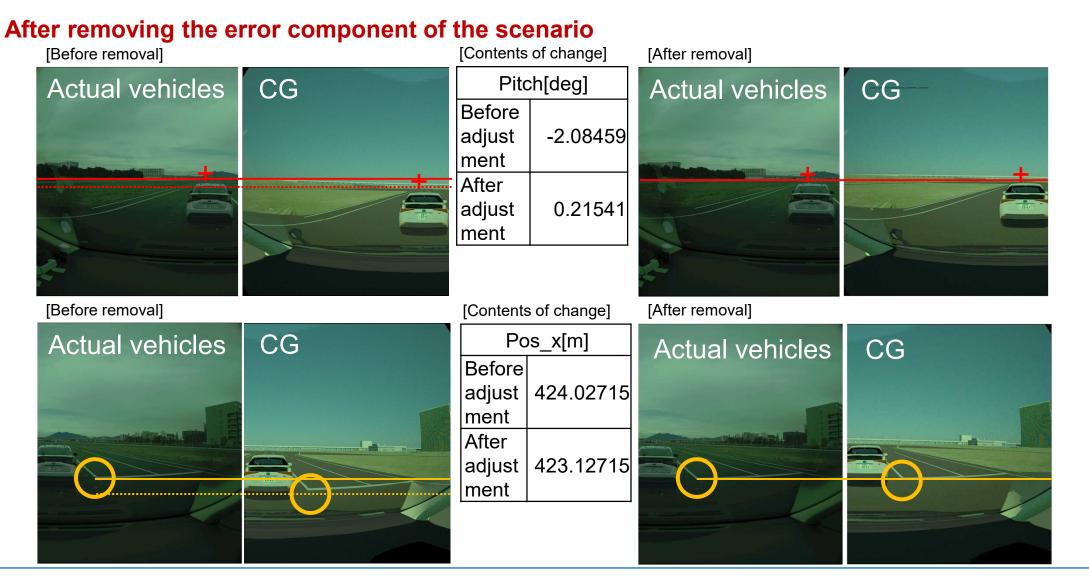
When verifying consistency in camera recognition, it is necessary to accurately reproduce the position and orientation of the actual vehicle and the mounting position of the camera

Before removing the error component of the scenario

# Actual vehicles CG divp\_Map\_JTown\_10cm Overlaying of actual vehicles/CGs


Source : Hitachi Astemo, Ltd. DIVP<sup>®</sup> Consortium

When verifying consistency in camera recognition, it is necessary to accurately reproduce the position and orientation of the actual vehicle and the mounting position of the camera.


#### The largest error component

HITACHI Inspire the Next

1.Difference in the vanishing point2.Difference in white-line origin



# Adjustments from GPS information that cannot be simply reproduced are performed to eliminate the error component of the scenario



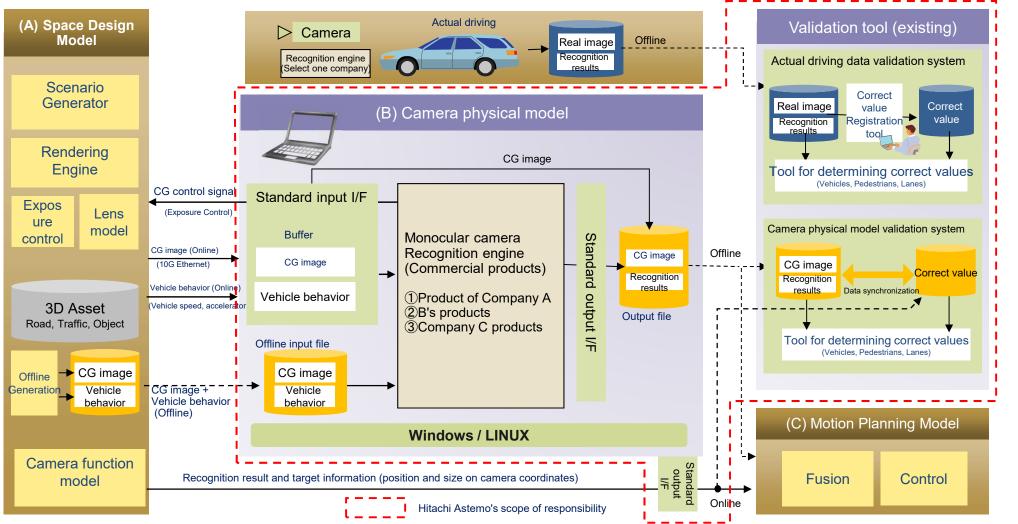
Source : Hitachi Astemo, Ltd. DIVP<sup>®</sup> Consortium

# Adjustments from GPS information that cannot be simply reproduced are performed to eliminate the error component of the scenario

#### **Recognition results**

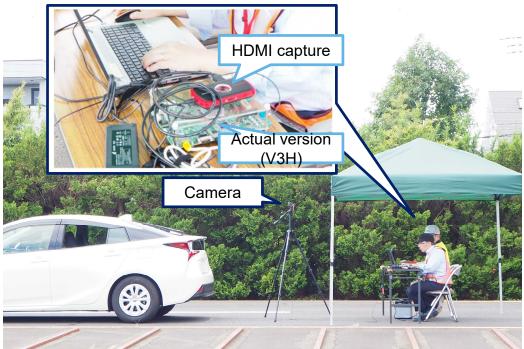
**Object (essence)** 

|                                   | Data                           |           | Actual<br>vehicle | CG         | Difference | Differenc<br>e rate |          |
|-----------------------------------|--------------------------------|-----------|-------------------|------------|------------|---------------------|----------|
| Target size                       | Screen<br>coordinates          | X         | 381               | 368        | -13        | -3%                 |          |
|                                   |                                | Y         | 333               | 301        | -32        | -10%                |          |
|                                   | Sensor<br>coordinates          | X         | 0                 | 0          | 0          | 0%                  | 1        |
|                                   |                                | Y         | 1.75              | 1.8        | 0.05       | 3%                  |          |
|                                   |                                | Z         | 1.52              | 1.48       | -0.04      | -3%                 | ■Validat |
| Target<br>position<br>information | coordinates                    | X         | 1421              | 1424       | 3          | 0%                  | Maxin    |
|                                   |                                | Y         | 1132              | 1131       | -1         | 0%                  | ]        |
|                                   | Sensor X<br>coordinates Y<br>Z | X         | 4.93              | 5.3        | 0.37       | 8%                  |          |
|                                   |                                | Y         | 0.14              | 0.13       | -0.01      | -7%                 |          |
|                                   |                                | Z         | -0.83             | -0.86      | -0.03      | 4%                  |          |
|                                   | World Latitude                 | Latitude  | 2147483648        | 2147483648 | 0          | 0%                  |          |
|                                   | coordinate                     | Longitude | 2147483648        | 2147483648 | 0          | 0%                  |          |
|                                   |                                | Altitude  | 0.76              | 0.73       | -0.03      | -4%                 |          |
| Reliability                       | Normalizatior                  | -         | 99                | 99         | 0          | 0%                  |          |
|                                   | Number<br>detected             | -         | 251               | 251        | 0          | 0%                  |          |

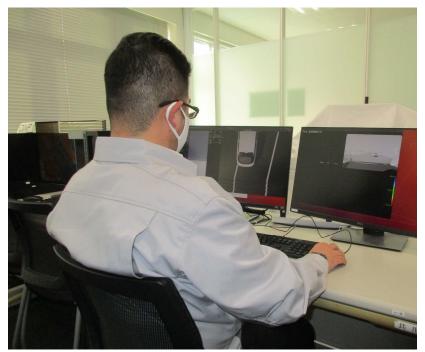

Validation results Maximum error within ± 10%

Comment

It is considered that this environment can be used in a static state without recognition error factor. In the next step, the validation will be carried out in the dynamic state and the state in which the recognition error factor are added, and the practicality will be continuously examined.


# Develop a set of tools for ease of incorporation into the validation environment of each company (including facilitation of adaptation to standard I/F)

#### **Camera verification environment**




# Develop a set of tools for ease of incorporation into the validation environment of each company (including facilitation of adaptation to standard I/F)

#### ■Actual vehicle verification



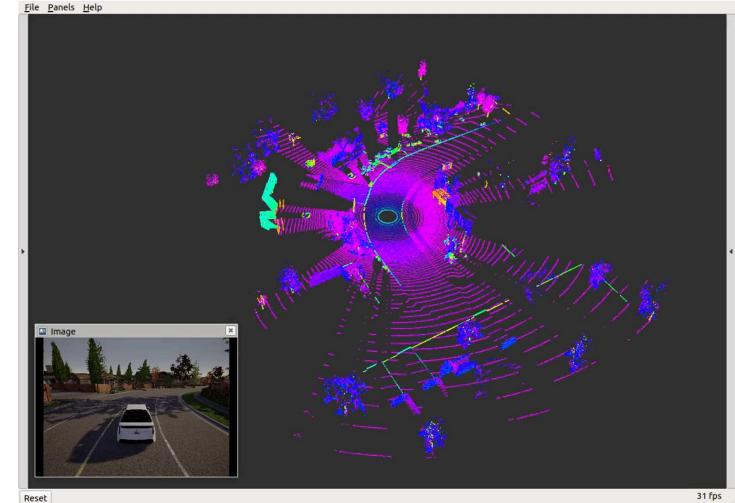
#### ■CG verification



Actual vehicle verification results








Source : Hitachi Astemo, Ltd. DIVP<sup>®</sup> Consortium

# Highly consistent sensor model



#### LiDAR modeling & verification was implemented



#### **LiDAR** simulation

Nihon Unisys, Ltd

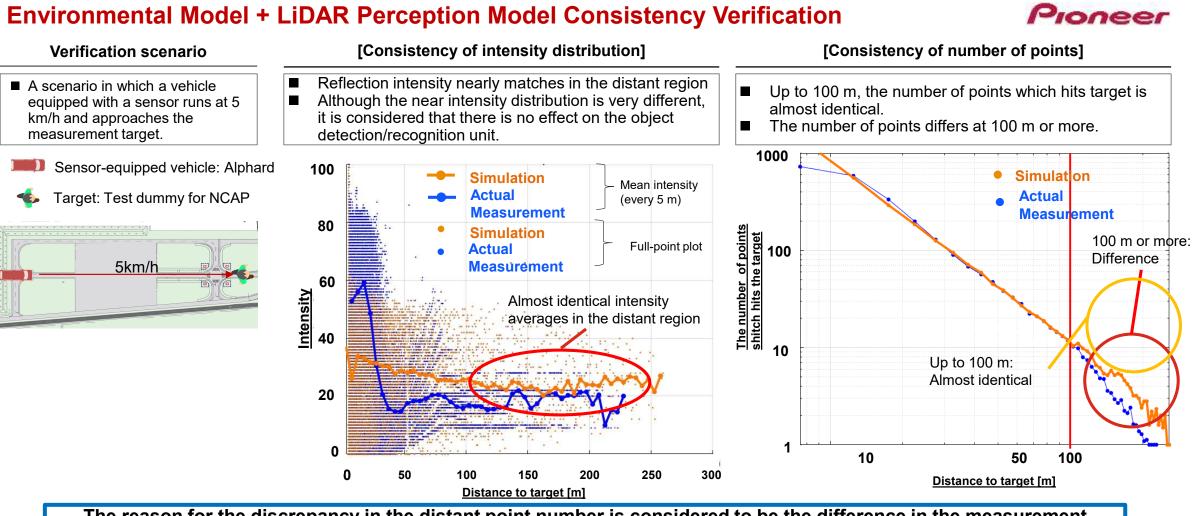
Pioneer

#### [Consistency verification ] Verify the consistency effectively by eliminating error factors as much as possible at each step.

#### **Consistency verification**

| Step                                                                             | Purpose of Verification                                                                                                                                                                                                            | Validation target                        | Validation parameters                                                                                       | Validation index <b>Proneer</b>                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consistency verification of<br>LiDAR perception model                            | Assess the consistency of LiDAR perception<br>models (scanning and ranging models) by<br>eliminating errors caused by environmental,<br>spatial propagation models and scenarios as<br>much as possible.                           | RX model output<br>( Only PSSI<br>model) | <ul> <li>Intensity distribution of<br/>received signal</li> <li>Noise intensity<br/>distribution</li> </ul> | <ul> <li>distance of the target with known shape and reflection characteristics</li> <li>Consistency of noise intensity distribution, mean, and variance at each distance of the target with known shape and reflection characteristics</li> </ul> |
|                                                                                  |                                                                                                                                                                                                                                    | Perception model<br>output               | ■ Angle                                                                                                     | <ul> <li>Vertical resolution (elevation angle between adjacent lines)</li> <li>Consistency of horizontal resolution (azimuth angle between adjacent points in the horizontal direction)</li> </ul>                                                 |
|                                                                                  |                                                                                                                                                                                                                                    |                                          | <ul><li>Distance</li><li>Intensity</li></ul>                                                                | <ul> <li>Consistency of accuracy and precision at each distance of the<br/>target with known shape and reflection characteristics</li> </ul>                                                                                                       |
|                                                                                  |                                                                                                                                                                                                                                    |                                          | Distance measurement<br>limit                                                                               | <ul> <li>Consistency of detection probability of the target<br/>with known shape and reflection characteristics</li> </ul>                                                                                                                         |
| Consistency verification of<br>environmental model and<br>LiDAR perception model | Assess the consistency of the environmental<br>model and the LiDAR perception model<br>(scanning model and ranging model) by<br>eliminating errors caused by the spatial<br>propagation model and scenario as much as<br>possible. | Perception model<br>output               | Minimum distance to<br>the target                                                                           | <ul> <li>Consistency of accuracy and precision of<br/>distance</li> </ul>                                                                                                                                                                          |
|                                                                                  |                                                                                                                                                                                                                                    |                                          | The number of points to<br>hit the target                                                                   | <ul> <li>Consistency of accuracy and precision of the<br/>number of points</li> </ul>                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                                                    |                                          | ■ Target size                                                                                               | <ul> <li>Consistency of accuracy and precision of the<br/>target size</li> </ul>                                                                                                                                                                   |
|                                                                                  |                                                                                                                                                                                                                                    |                                          | Intensity of target point<br>cloud                                                                          | <ul> <li>Consistency of intensity distribution</li> </ul>                                                                                                                                                                                          |
| Impact validation on recognition model output                                    | Evaluate the effect of the difference between<br>the perception model output point cloud and<br>the actual LiDAR output point cloud on the<br>recognition model output.                                                            | Recognition<br>model output              | Long-range distance<br>detection limit                                                                      | Detection probability of the target                                                                                                                                                                                                                |
| Malfunction reproduction verification                                            |                                                                                                                                                                                                                                    |                                          |                                                                                                             | ,                                                                                                                                                                                                                                                  |
| Extensibility verification                                                       | Continued verification in the future                                                                                                                                                                                               |                                          |                                                                                                             | Validation only with PSSI model                                                                                                                                                                                                                    |

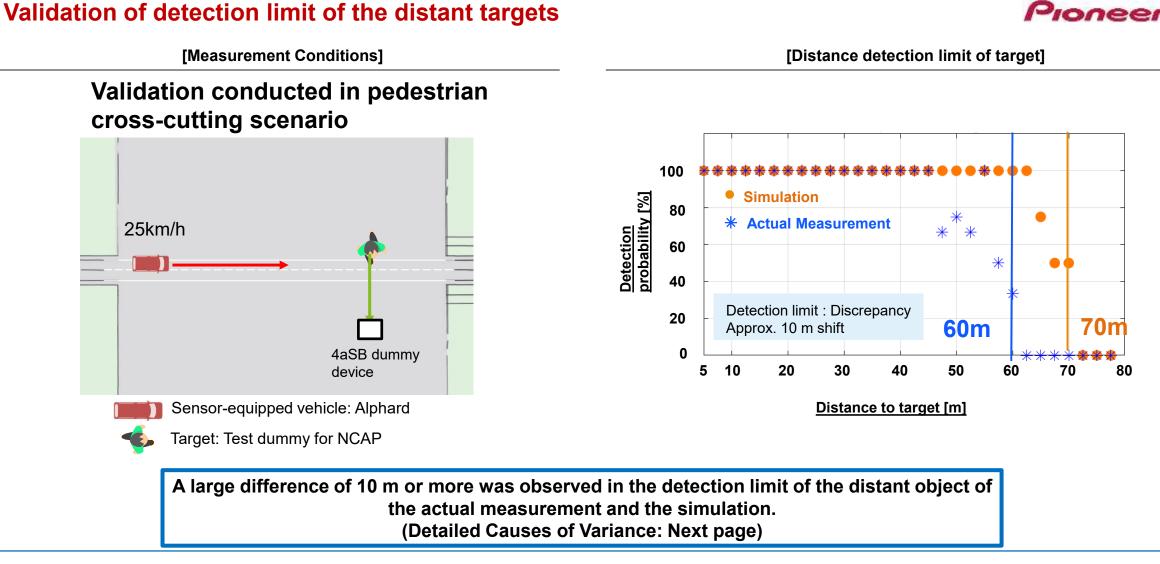
In this year's research, we will evaluate the LiDAR manufactured by Company V and PSSI, verify that there is a certain degree of consistency under no sensor malfunction conditions for Company V model, and evaluate the PSSI LiDAR under sensor malfunction conditions that cause problems and extract some issues. We will resolve the issues in the activities for the following year.


#### **Summary of Consistency Verification and Issues**

Evaluation item Company V LiDAR (b) **PSSI LIDAR** Consistency verification for LiDAR Perception Model Peak level of received signal Noise level ○ ※1 Angle Not experimenting Distance  $\triangle$  (Inconsistency in close range ) Intensity  $\bigcirc$ Distance measurement limit Not experimenting  $\bigcirc$ Consistensy verification for Environment model + LiDAR Perception Model Target size Not experimenting Minimum distance to the Not experimenting  $\bigcirc$ target The number of points that hit  $\triangle$  (Inconsistency in long range )  $\bigcirc$ the target Intensity distribution of target  $\triangle$  (Inconsistency in close range)  $\bigcirc$ point cloud Impact evaluation on recognition model output  $\times$  (Confirmed that ambient point clouds Long-range detection limit ○ ※2 affect the long Range detection limit)

※1 There is a challenge with the measurement method under conditions with disturbed light.
 ※2 Black leather jacket NCAP, which is a condition for malfunctioning, does not match.



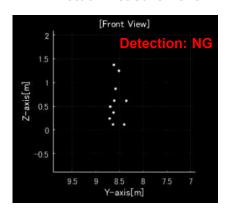

#### [Consistency verification of Company V Model (b)] The concordance of the intensity distribution in the distance was confirmed, and the number of points was inconsistent in the distance.



The reason for the discrepancy in the distant point number is considered to be the difference in the measurement distance limit of LiDAR.

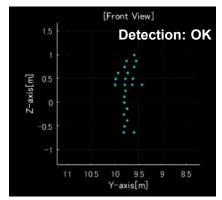
Source : Pioneer Smart Sensing Innovations Corporation.

### [Consistency Verification of Company V Model (b)] At output of recognition model, detection limit of distant target differs 10 m or more




Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium

#### **Detection limit of the target in long distance : Cause of difference**

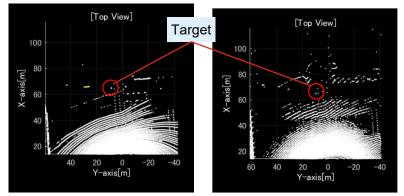

[Factor ①: Inconsistency in shape of target point cloud]

#### Comparison of 65m ahead target point cloud



**Actual Measurement** 

#### Simulation




[Factor 2: Effect of ambient point cloud]

# Comparison of point cloud around the target (target location: 65m ahead)

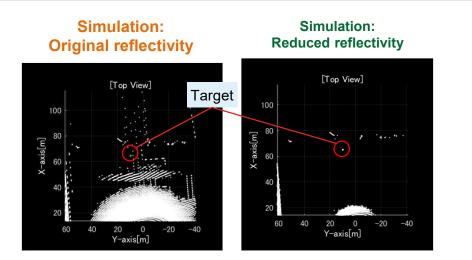
#### **Actual Measurement**

Simulation

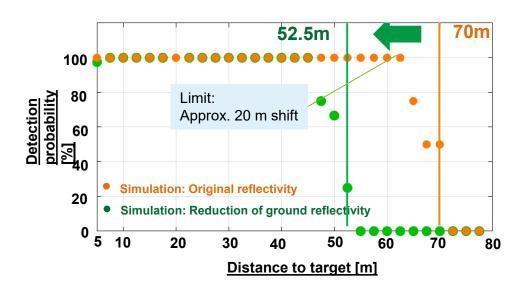


Differences in the shape of the target point cloud ⇒Possible cause of difference Differences in the shape of ambient point cloud of the target ⇒ Investigation of the effect of point cloud around the target (next page)

Source : Pioneer Smart Sensing Innovations Corporation.  $\mathsf{DIVP}^{\circledast}$  Consortium


lonee

Pioneer


#### Long-distance detection limit of target: assessment of the effect of point cloud around the target

Difference in point cloud around the target (target location: 65m ahead)

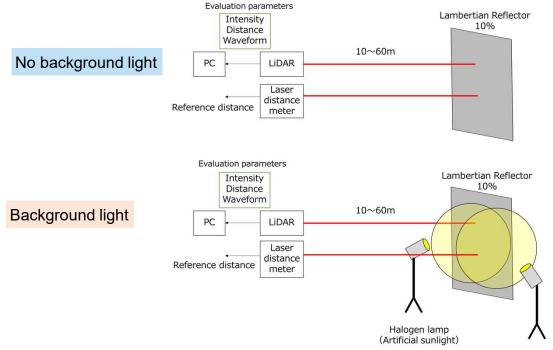
Contents of verification: Investigation whether intentional changes in the reflectivity of only the ground affect the detection limit of the target.



Differences in the detection limit of distant targets due to differences in point cloud around the target



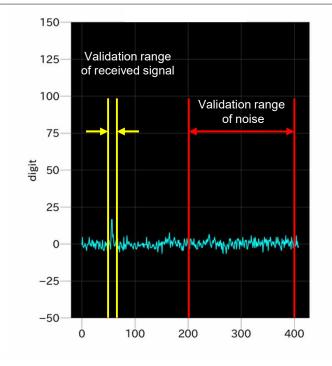
Ground reflectivity differences around the target significantly reduce the target's detection limit for long distance.


It was confirmed that the target's long-range detection limit was affected by the point cloud around the target.

[PSSI LiDAR Consistency Verification] The consistency of PSSI-LiDAR (Rx model/ranging model) was evaluated in the laboratory by eliminating errors caused by the environmental model and scenario as much as possible.

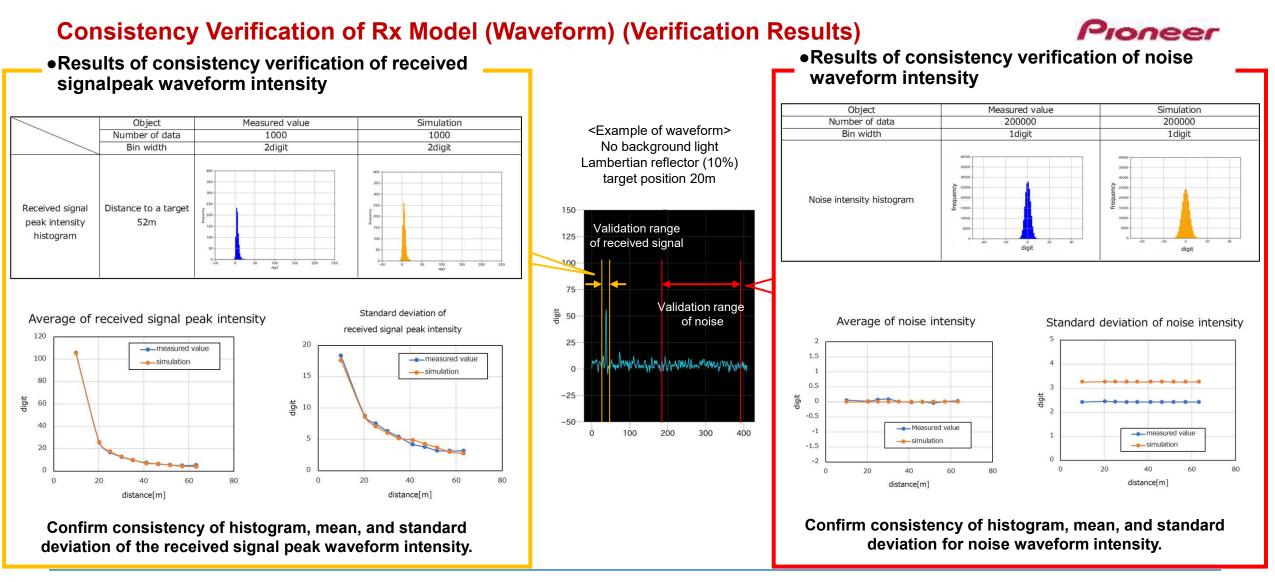
#### **Consistency Verification of LiDAR perception model**

Validation environment in consistency verification of PSSI LiDAR


- Measurement by changing the distance between LiDAR and Lambertian reflector.
- The halogen lamp is used for the background light as simulated sunlight.





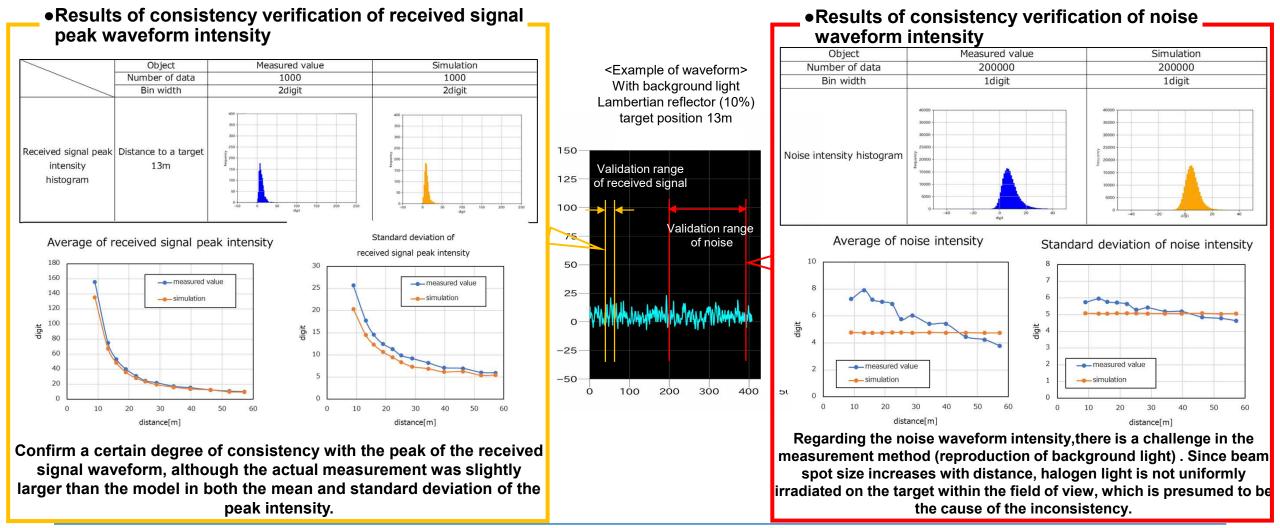

#### Rx model output (waveform) Validation

- For the noise waveform validation, the range that is not affected by the received waveform from the target is used.
- For the received signal waveform validation, the maximum peak in the predetermined range is used.



Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium

### [PSSI LiDAR Consistency Verification: Rx Model (Waveform) Validation] Confirm consistency of Rx model (waveform) with no background light.



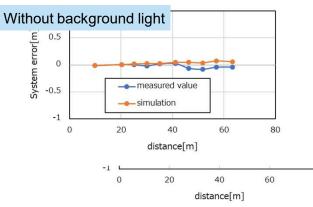

Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium

### [PSSI LiDAR Consistency Verification: Rx Model (Waveform) Validation] The noise component of the Rx model (waveform) is not matched with the background light.

### **Consistency Verification of Rx Model (Waveform) (Verification Results)**

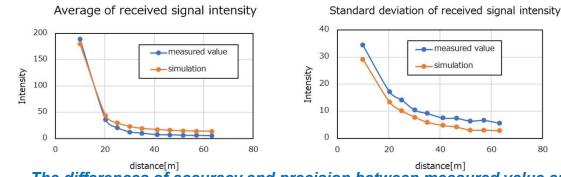
Pioneer




### [PSSI LiDAR Consistency Verification] Confirm consistency of the ranging model (point group) without background light.

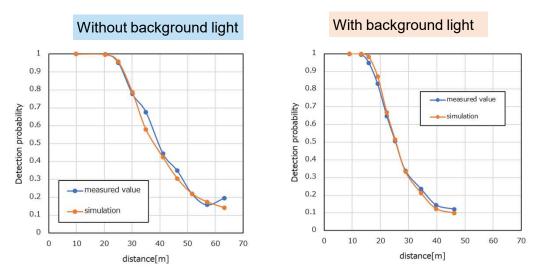
60

80


#### Consistency Verification (verification results) of output of ranging model (point cloud) Pioneer

•Consistency verification of distance .ccuracy of measurement distance




#### Adequate consistency was confirmed for accuracy and precision.

#### Consistency verification of intensity

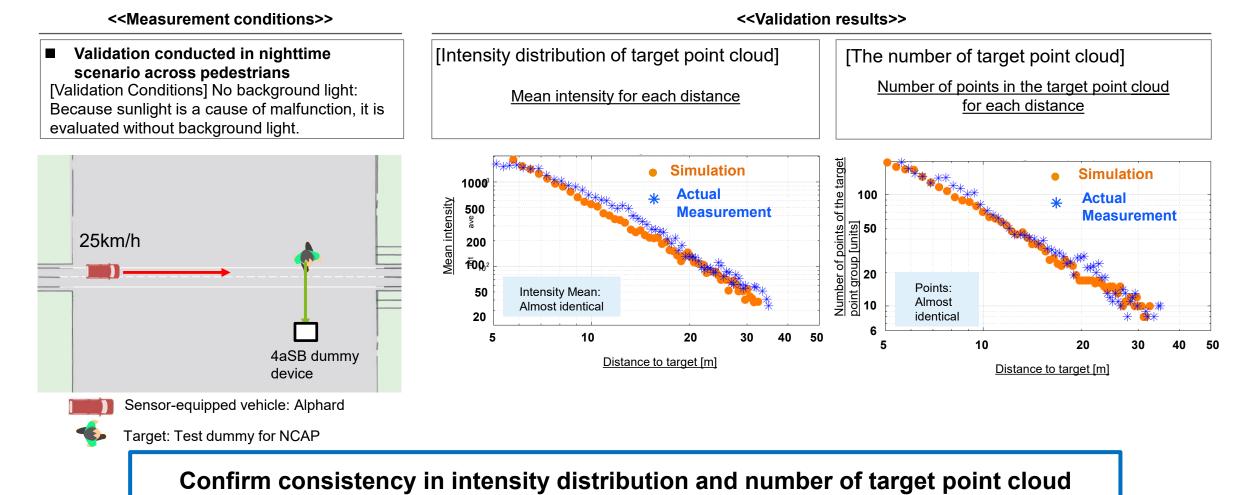


The differences of accuracy and precision between measured value and simulation are small, and the measured value tends to be higher than simulation.

#### Consistency verification of detection probabilities



Confirm consistency of ranging limit (detection probability) by both conditions without background light and with background light.


#### Source : Pioneer Smart Sensing Innovations Corporation.

#### DIVP<sup>®</sup> Consortium

### [PSSI LiDAR Consistency Verification] Confirm consistency between intensity distribution and number of target point cloud.

#### **Consistency Verification for Environmental Model + LiDAR Perception Model**

Pioneer



#### Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium

#### Impact validation on Recognition Model Output

#### <<Measurement conditions>>

#### <<Validation results>>

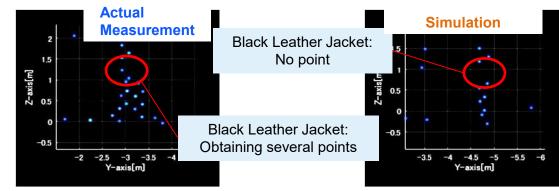
Validation conducted in nighttime The target detection limit of the PSSI LiDAR recognition model depends on the number of points which hits scenario across pedestrians the target. [Validation Conditions] No background light: There are two main factors that determine the number of points. Because sunlight is a cause of malfunction, it is Detection limit by target size and resolution of LiDAR ⇒ Confirmed with test dummy for NCAP  $\geq$ evaluated without background light. Detection limit by influence of target reflectance ⇒ Confirmed with test dummy with black leather jacket for NCAP [Detection limit of target] [Detection limit of target] (Test dummy with black leather jacket for NCAP) (Test dummy for NCAP 32.5m 35m 22.5m 35m 100 100 25km/h <u>Detection</u> probability 80 80 Detection 60 8 40 60 Limits: Limit: Almost 40 Discrepancy Simulation Simulation identical 20 20 \* Actual Measurement 4aSB dummy **Actual Measurement** device 0 20 30 Λ 40 10 5( 20 30 40 50 10 Sensor-equipped vehicle: Alphard Distance to target [m] Target: Test dummy for NCAP Distance to target [m]

Confirmed consistency of long-distance detection limit in test dummy for NCAP Confirmed inconsistency of long-distance detection limit in test dummy with black leather jacket

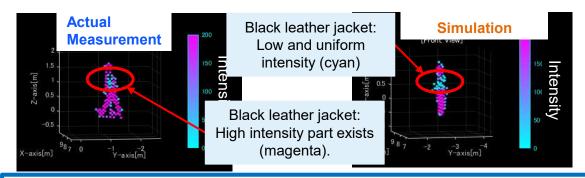
loneer

#### [PSSI LiDAR Consistency Verification]

#### Evaluate the effect of target point cloud shape and reflectance on the target long-range detection limit

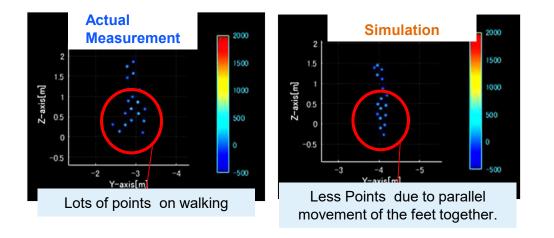

### [Detection limit of the target: Investigation of the cause of differences] (Test dummy with black leather jacket)

### Pioneer


[Factor ①: Difference in the lower body point cloud shape]

[Factor 2: Effect reflectance of black leather jacket]

Difference in point cloud of black leather jacket (distance to target: 22 m)




Difference in intensity of a black leather jacket (distance to target: 8 m)

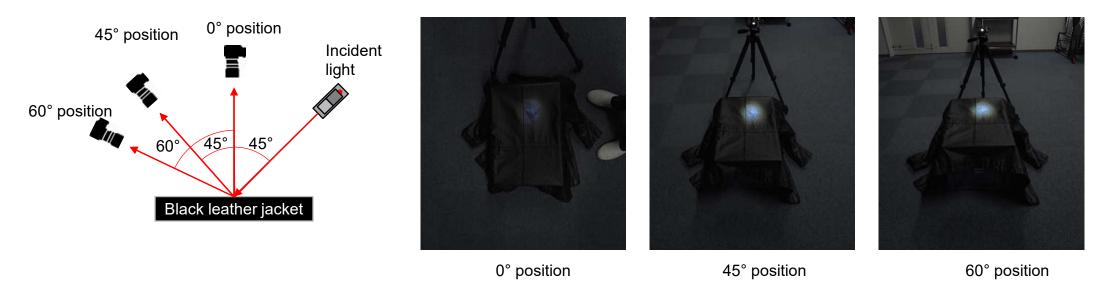


Although black leather jacket have specular components, they are not reproduced in the model ⇒ Candidate of difference factor

#### Difference in the shape of the lower body point cloud



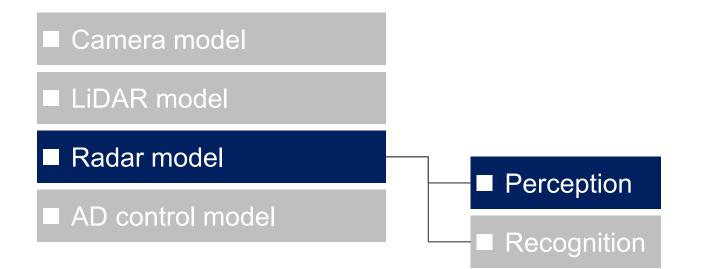
Large difference in the shape of the lower half of the target between actual measurement and simulation ⇒ Candidate of difference factor


Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium

### [PSSI LiDAR Recognition Model Impact Validation] Investigation of specular reflection characteristics of black leather jacket

[Distance detection limit of target (with test dummy with black leather jacket for NCAP): Investigation of the cause of difference]

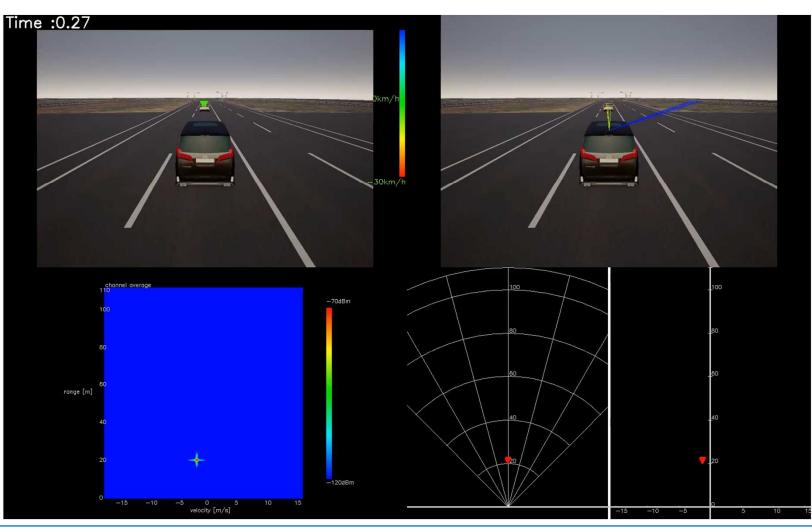
[Factor 2: Effect of reflectance of black leather jacket ]


<u>Changes in the reflected light intensity of the black leather jacket when the camera angle is changed (the incident light is about 45°)</u>



Confirm that the black leather jacket contains a specular reflection component significantly larger than the diffuse reflection component.

Source : Pioneer Smart Sensing Innovations Corporation. DIVP<sup>®</sup> Consortium Pionee


# **Highly consistent sensor model**



#### Radar model was implemented & under validation of Real vs Simulation consistency

#### **Radar simulation**

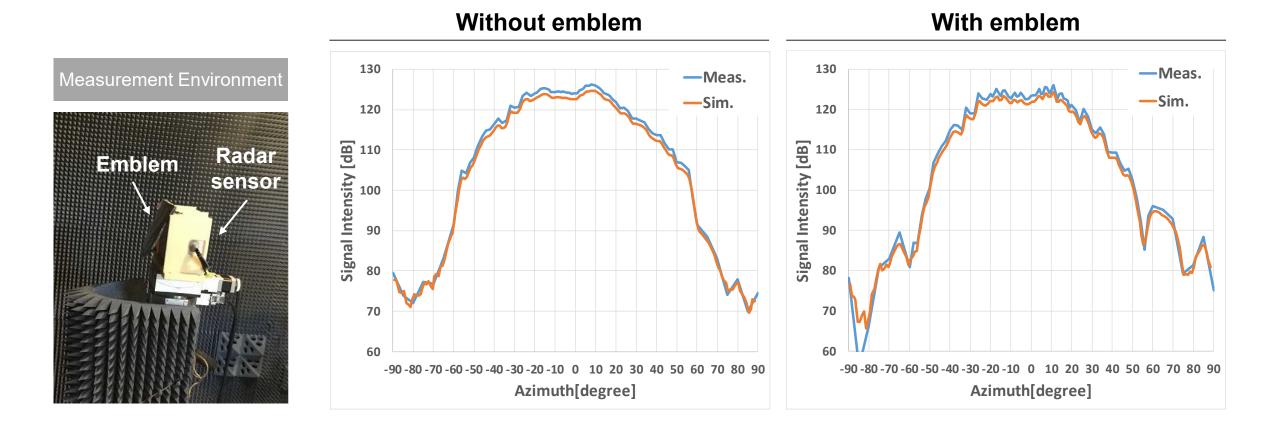
#### **DENSO** SOKEN Nihon Unisys, Ltd



Source : SOKEN, INC DIVP<sup>®</sup> Consortium

# Assessment of simulator function in stages to clarify issues for each layer (sensor model, asset model, propagation model)

#### **Consistency verification**


#### **DENSO** SOKEN Nihon Unisys, Ltd

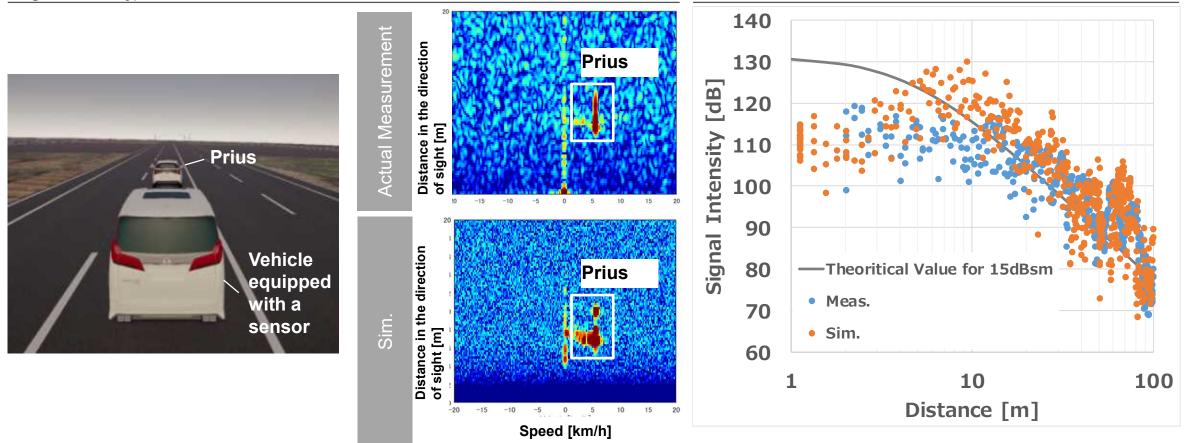
| Step                                    | Purpose of Verification                                                                                                   | Confirmation characteristics                                                              | Validation index                                                                                                           |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Join<br>operation<br>check              | Confirmation of the validity of the I/F defined and                                                                       | Distance, speed, angle and<br>signal intensity                                            | <ul> <li>Distance, speed, angle and signal intensity in<br/>anechoic chambers</li> </ul>                                   |
|                                         | of the perception output to the point source<br>(corner reflector)                                                        | Antenna directivity and circuit<br>noise                                                  | <ul> <li>Directional dependence of signal intensity and noise<br/>intensity distribution</li> </ul>                        |
|                                         |                                                                                                                           | Error due to the emblem                                                                   | Angle estimation error                                                                                                     |
| Preliminary<br>verification<br>(Static) |                                                                                                                           | Reflection intensity, reflection<br>point distribution                                    | <ul> <li>Signal intensity distribution for distance, speed and angle</li> </ul>                                            |
|                                         | Verification of basic single-object                                                                                       | Road surface multipath                                                                    | <ul> <li>Distance dependence of corner reflector and Prius<br/>signal intensity</li> </ul>                                 |
| Basic<br>verification<br>(Dynamic)      | (Prius, NCAP dummy pedestrian and bicycle)                                                                                | Micro-Doppler                                                                             | <ul> <li>Signal intensity distribution in the speed direction by<br/>pedestrian leg movements and tire rotation</li> </ul> |
| NCAP                                    | Verification of basic multi-objects(combinations                                                                          | Multiple echo                                                                             | <ul> <li>Ghost echoes between the ego-vehicle and the Prius</li> </ul>                                                     |
| scenario<br>verification                | of Prius, Alphard, NCAP dummies, etc.)                                                                                    | Shielding properties of objects                                                           | Time to start seeing the target behind the object                                                                          |
| Malfunctions<br>verification            | <ul> <li>Verification of objects (manholes and corrugated<br/>cardboard) that are subject to false positive or</li> </ul> | Signal intensity                                                                          | <ul> <li>Signal intensity of manholes and corrugated<br/>cardboard</li> </ul>                                              |
| Extensibility                           |                                                                                                                           | Multipath with tunnel walls                                                               | <ul> <li>Situation of ghost to the overtaking vehicle</li> </ul>                                                           |
|                                         | false negative using millimeter-wave radar<br>■ Verification in the actual traffic environment                            | Reflection intensity and<br>reflection point distribution of<br>the surrounding structure | <ul> <li>Signal intensity distribution for tunnel/bridge distance,<br/>speed and angle</li> </ul>                          |

# Build a mechanism to reproduce malfunctions by incorporating sensor characteristics and error factors into the Radar model based on actual measurements

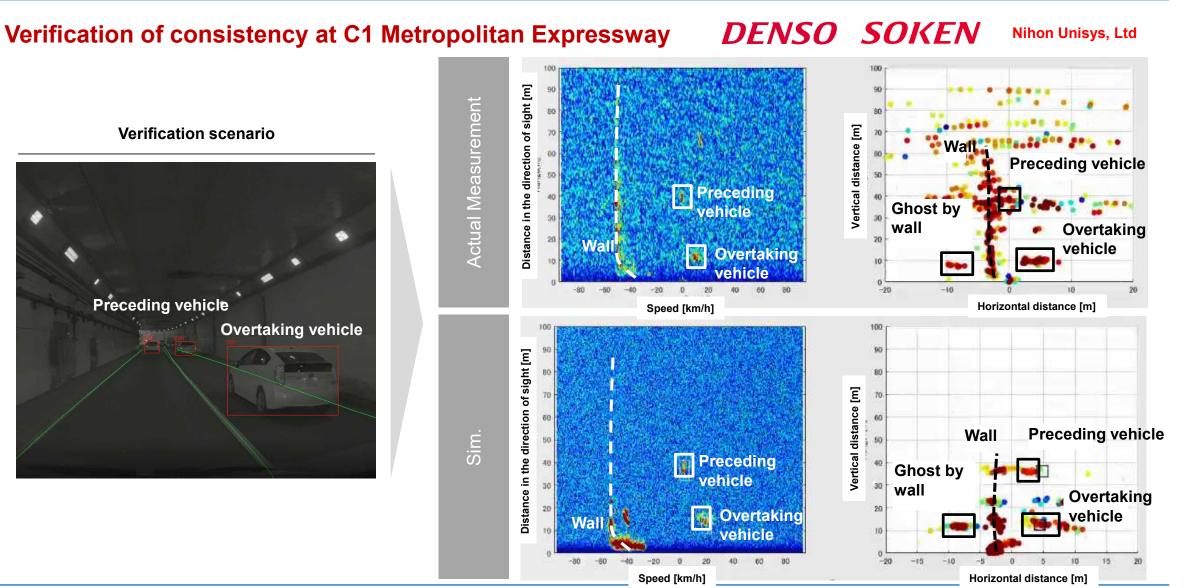
#### Azimuth dependence of signal intensity

**DENSO SOKEN** Nihon Unisys, Ltd




# By applying PO approximation and using reflection rate based on actual measurement, it was confirmed that the signal intensity level and distance attenuation are largely consistent

#### Verification in the longitudinal departing scenario


DENSO SOKEN Nihon Unisys, Ltd

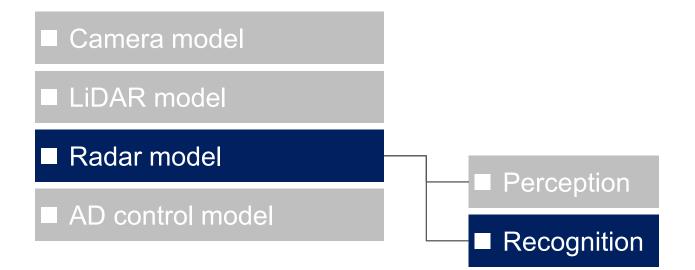
Confirmation of consistency of perception data outputs(distance, speed, angle, signal intensity)

Comparison of signal intensities at the maximum reflection point



Establishment of the simulation environment and model construction method enabled simulation in complex actual driving scenes and enabled the extraction of problems.




# The consistency of the millimeter-wave Radar model was confirmed, and current issues were extracted.

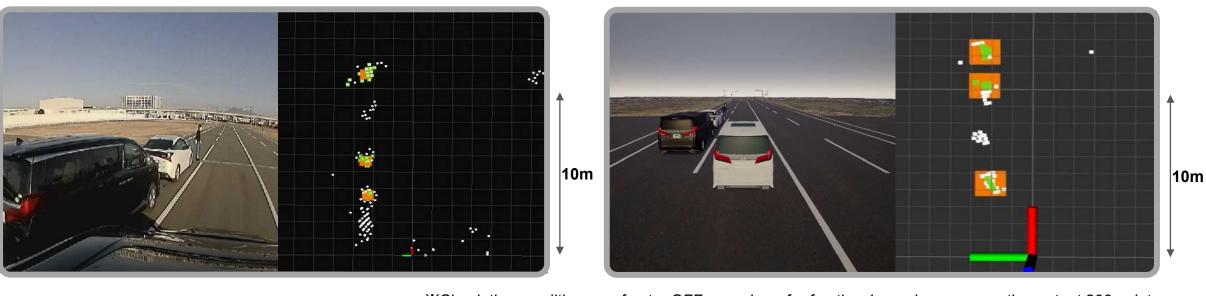
#### **Results of confirmation of conformity with Radar model**

**DENSO** SOKEN Nihon Unisys, Ltd

| Confirmation characteristics                                         | Check item                                                                                | Contents of the consistency confirmed                                                                                                                                                | Current issues                                                                                                                                                                        |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reflection<br>characteristics of the<br>target object                | Perception data output for the Prius,<br>pedestrians, corrugated products and<br>manholes | <ul> <li>The distance, speed and angle are almost the same.</li> <li>The signal Intensity of the Prius, pedestrian and manhole is almost identical depending on the scene</li> </ul> | <ul> <li>Method of asset splitting and allocation of<br/>reflection characteristics</li> <li>Modeling of irregular surface structures such as<br/>corrugated vehicledboard</li> </ul> |
| Reflection<br>characteristics of<br>peripheral structures            | Perception data output of tunnels and bridges                                             | -                                                                                                                                                                                    | <ul> <li>Reflection and reproduction of peripheral<br/>structures</li> </ul>                                                                                                          |
| Shielding properties of objects                                      | Time to start seeing the target behind the object                                         | The time to start seeing is almost the same.                                                                                                                                         | <ul> <li>Validation against the principles of diffraction and transmission</li> </ul>                                                                                                 |
| Multipath<br>characteristic                                          | Distance dependence of on-street corner reflector and Prius signal intensity              | -                                                                                                                                                                                    | <ul> <li>Reproduction of Road Surface Multipath Effects</li> </ul>                                                                                                                    |
|                                                                      | Ghost at the tunnel wall                                                                  | Check for ghost.                                                                                                                                                                     | <ul> <li>Reproducibility check of signal intensity</li> </ul>                                                                                                                         |
| Multiple echo<br>characteristics                                     | Multiple echo signals between the ego-<br>vehicle and the Prius                           | Confirm signal generation by multiple echoes.                                                                                                                                        | Reproducibility check of signal intensity                                                                                                                                             |
| Influence of the<br>environment in which<br>the sensor is<br>mounted | Angle estimation error by the emblem                                                      | The Angle estimation error is almost identical.                                                                                                                                      | <ul> <li>Modeling for each mounting environment</li> </ul>                                                                                                                            |
| Micro-Doppler                                                        | Perception data output of tires to rotate and pedestrian foot movements                   | <ul> <li>Generation of micro-Dopplers due to pedestrian<br/>foot movements</li> </ul>                                                                                                | <ul> <li>Optimization of asset split method and Ray<br/>parameter setting</li> </ul>                                                                                                  |

# Highly consistent sensor model




### DIVP<sup>®</sup> platform contributes to the development and validation of radar recognition models.

#### Coordinates output of the radar recognition model (NCAP-AEB test : 25km/h)



Real

**DIVP<sup>®</sup> simulation** 



\*Simulation conditions : refrector OFF、number of refrection 1, maximum perception output 200 points

OPerception output Perception output after removing noise Recognition output

The radar recognition model has some issues concerning the accuracy of coordinates estimation
The accuracy depends on "Method of asset splitting and allocation of reflection characteristics".

Source : Ritsumeikan University DIVP<sup>®</sup> Consortium

### DIVP<sup>®</sup> platform contributes to the development and validation of radar recognition models.

#### Relative velocity output of the radar recognition model (NCAP-AEB test : 25km/h)

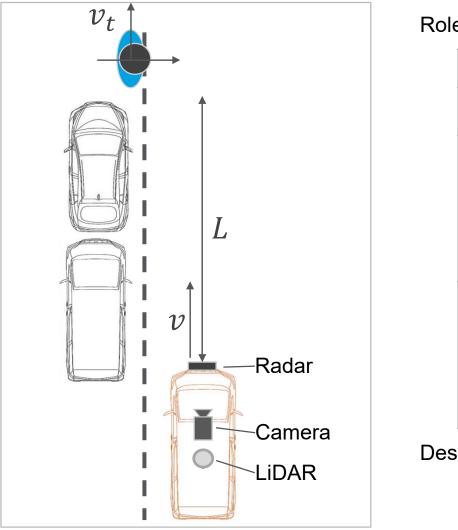
**DIVP<sup>®</sup> simulation** Real velocity velocity . 0 -1 -1 -2 -2 -3 -3 v[m/s] v[m/s] \_4 -5 -5 -6 -6 -7 -7 -8 -8 5 20 20 10 15 5 10 15 0 0 r[m] r[m]

The above figures show that the actual measurement and the simulation are almost the same regardless of the distance.

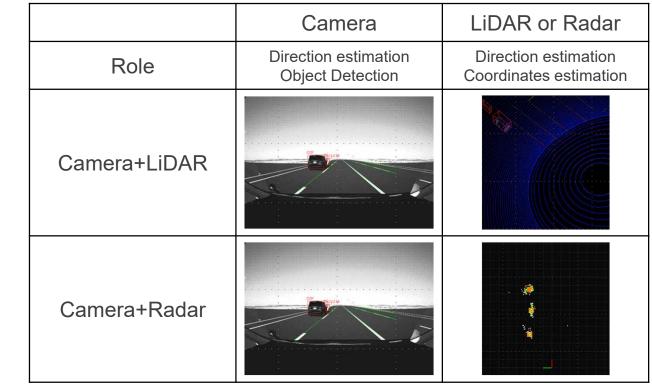
**R**ITSUMEIKAN

# Highly consistent sensor model

Camera model


■ LiDAR model

Radar model


AD control model

# A fusion model combining camera, LiDAR and radar achieved highly accurate coordinates estimation to the target objects.

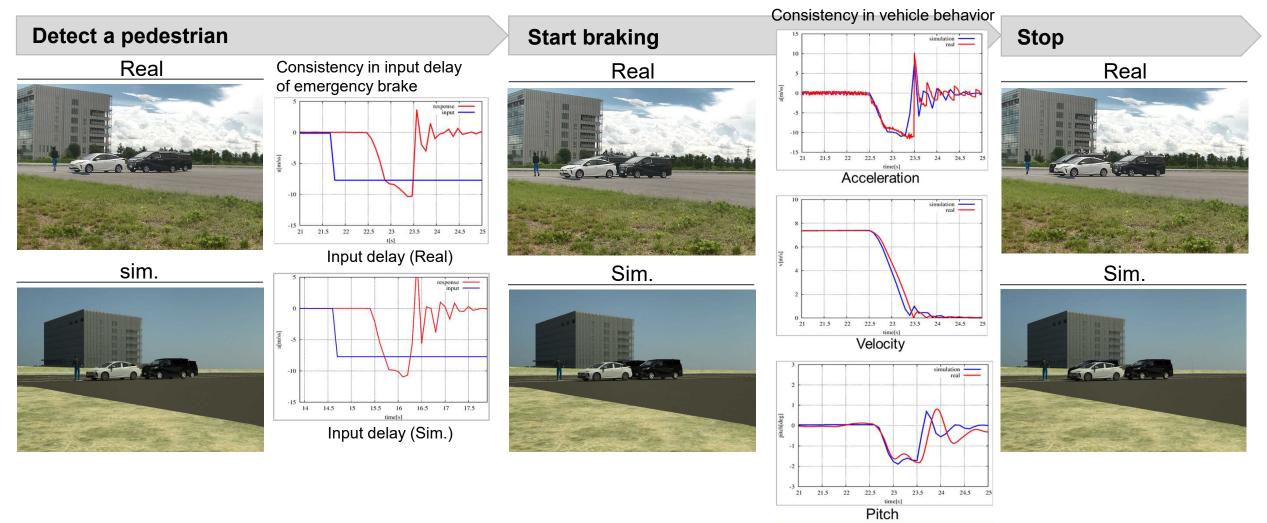
#### The fusion model combining camera, LiDAR and radar for the NCAP-AEB test



Role of each sensor and design of sensor fusion

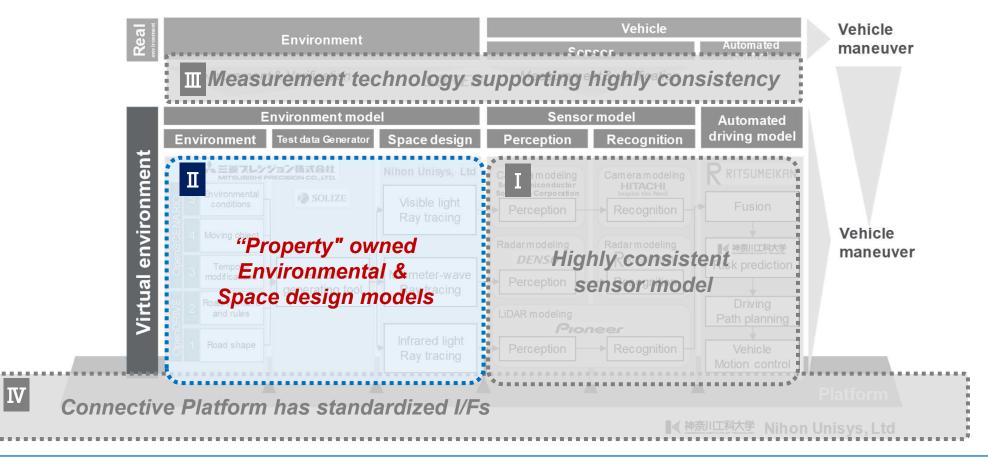


Design of AEB operation based on TTC (Time to Collision)


$$\Gamma TC = \frac{L}{v - v_t}$$

Source : Ritsumeikan University DIVP<sup>®</sup> Consortium **RITSUMEIKAN** 

# Steady experimental verification reflected real-world problems in the simulation, and the consistency of vehicle behavior was confirmed

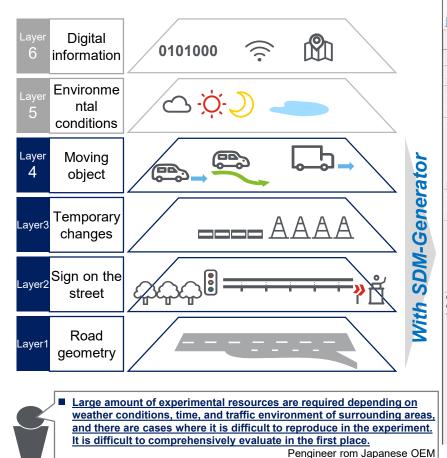

#### Verification of consistency in vehicle behavior

**R** RITSUMEIKAN

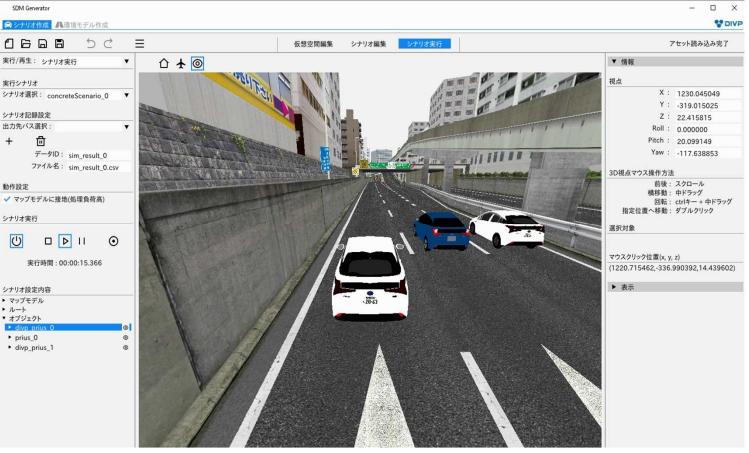


Source : Ritsumeikan University DIVP<sup>®</sup> Consortium

# FY2020 outcome




### The SDM<sup>\*</sup>-generator makes it possible to assemble the necessary traffic environment model freely at any time without being constrained by time, location, weather conditions, etc.


#### **Convenient traffic environment modeling technology**



Layer of the driving environment model



Creation of traffic environment models using SDM-generators



\*: <u>S</u>pace <u>D</u>esign <u>M</u>odel Source : MITSUBISHI PRECISION CO., LTD. It is possible to assemble any traffic environment such as road shape, placement of traffic participants, movement setting and also environmental factors such as rain and backlight.

σ

#### **Building Virtual Proving Ground**

A 三菱スレシジョン株式会社 MITSUBISHI PRECISION CO., LTD.

Rain

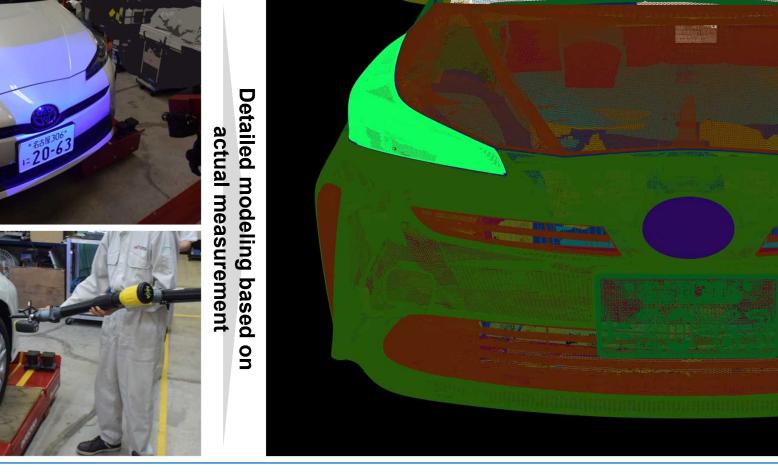
S DIVI ● シナリオ作成 ●環境モデル作品 1668 50 Ξ シナリオ編集 アセット読み込み完了 仮想空間編集 実行/再生: シナリオ再生 ▼ 情報 記録データ選択: sim\_result\_0 648.679685 卣 -242 327662 シナリオ再生 54 827655 Roll : 0.00000 Pitch : 42.843380 Ċ Yaw : 39.427042 00:00:00 / 00:00:34 3D視点マウス操作方法 前後: スクロール 横移動: 中ドラッグ シナリオ設定内容 回転: ctrlキー+中ドラッグ 指定位置へ移動:ダブルクリック ・ルート オブジェクト 選択対象 種別: 選択対象なし マウスクリック位置 xyz: 648.679685,-242.327662,54.827655 **Backlight** ▶ 表示

Simulation of traffic environment at J-town intersection

\* : Virtual Proving Ground Source : MITSUBISHI PRECISION CO.,LTD. DIVP® Consortium

### "Property" owned Environmental & Space design models

Precise Environmental & Space design models


Sensing weakness domain modeling

Sensing weakness scenario analysis

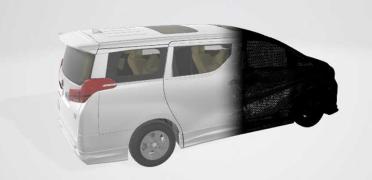
Each model of a property-bearing environment reproduces the internal structure with a high-definition polygon, allowing validation of millimeter-wave radar

#### High-resolution polygon model

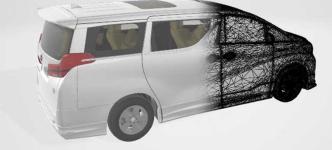
#### Laser measurement

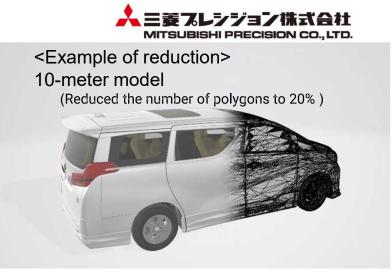


#### Polygon modeling

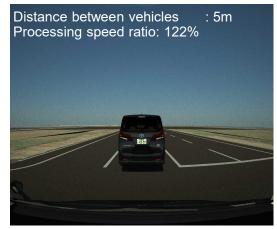

Source : SOKEN, INC, MITSUBISHI PRECISION CO., LTD. DIVP® Consortium

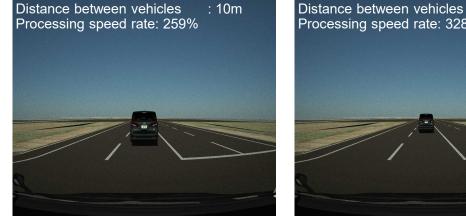
MITSUBISHI PRECISION CO., LTD.


#### By reducing the amount of information while ensuring the precision of the model shape, the precision and speed of the simulation are both achieved


**Development of information volume reduction tool (\*1) using sensor** resolution as an error tolerance

<Original data >





<Example of reduction> 5-meter model (Reduced the number of polygons to 20%)





×1 It is possible to set thresholds/conditions such as number of polygons, direction of normal before and after reduction, preservation of holes/boundaries, priority of blunting angle, etc.



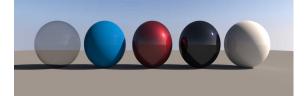





:20m

The amount was reduced by paying attention to information that is too detailed and does not affect the sensor, resulting in a high-speed simulation.

% The data is reduced to the extent that the difference cannot be recognized from the video.


# Reflective and transmission characteristics exist in material properties, and highly consistent reflection is reproduced by modeling based on experimental measurements

#### **Reflection and transmission characteristics of the material**



#### Nihon Unisys, Ltd SOKEN

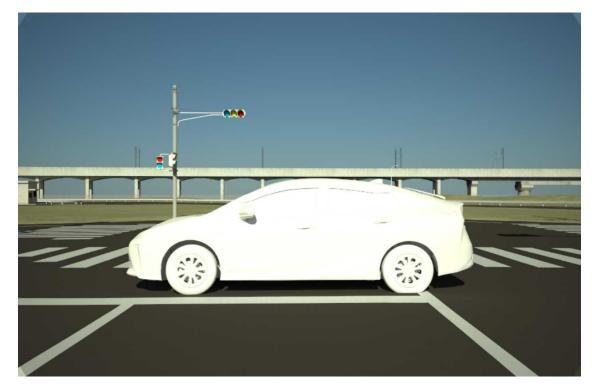
For each model in the measurement characteristics Can be set to any property.







Source : SOKEN, INC, Nihon Unisys, Ltd DIVP<sup>®</sup> Consortium


#### Application "Property" onto model surfaces realize precise objects in virtual environment

#### **Properties to reproduce the delicate traffic environment**

Nihon Unisys, Ltd SOKEN 🚣 三菱スレシジョン

No Property

The result is flat with no color or texture.



#### With Property

The characteristics of the material are reproduced, and the strength and transparency of color and reflection can be reproduced.



# Precisely reproducing the reflectance of visible light and the brightness of sunlight, and reproducing perception output of the camera close to the real environment

#### Spatial rendering of DIVP®

SOKEN Nihon Unisys, Ltd

**DIVP**<sup>®</sup>

Precise environmental reproduction by sunlight and reflectivity of objects

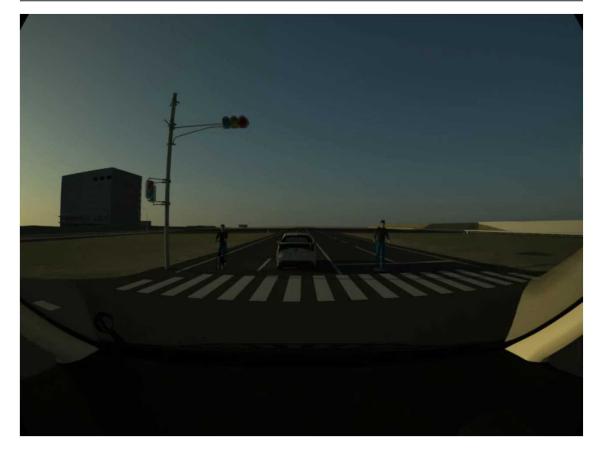


**Typical simulator (CARLA)** 

Unrealistic spatial rendering with limited (RGB3 primaries) reflections



Source : Copyright © CARLA Team 2019. DIVP<sup>®</sup> Consortium


## Simulating the actual movement of sunlight makes it possible to reproduce light equivalent to the actual environment

#### Sky light simulation

■ 神奈川工科大学 Nihor

Nihon Unisys, Ltd

From 07:00 to 17:00





Source : Kanagawa Institute of technology DIVP<sup>®</sup> Consortium

### "Property" owned Environmental & Space design models

Precise Environmental & Space design models

Sensing weakness domain modeling

Sensing weakness scenario analysis

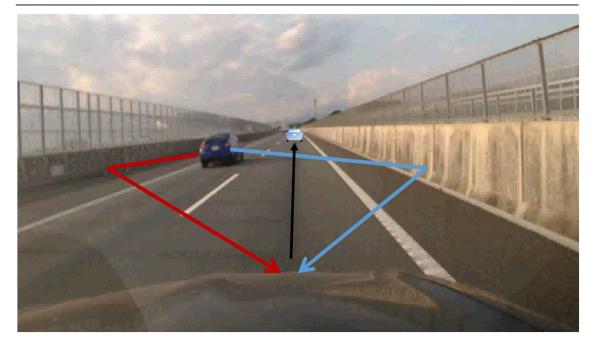
FY2020 Year-end report 82

## To validate "Visible" & "Invisible", which are the essence of the AD safety verification, the scenario data of the sensing weakness scene is constructed

#### Example of sensing weakness condition



Source : SOKEN, INC DIVP<sup>®</sup> Consortium


三菱スレシジョン株式会社

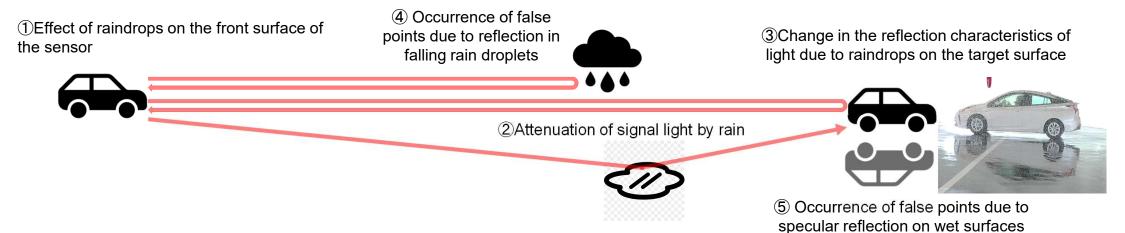
Radar recognizes objects by transmitting millimeter-waves and receiving reflections. Radar recognizes the problem of processing the reflection point because of the characteristics of millimeter-waves and low resolution. Radar contributes to research and development of these technical problems by reproducing precise phenomena in Sim.

#### Mechanism of the Radar slump

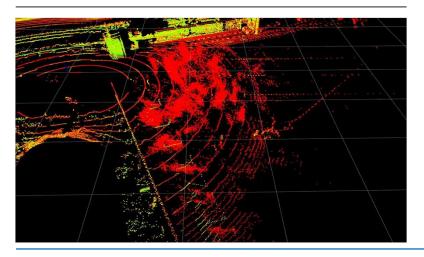
### DENSO SOKEN

Multipath example 1 of Radar




False recognition of the presence of the preceding vehicle due to multipath synthesis Multipath case 2 of Radar




The multi-pass signal of the construction pilot and the preceding vehicle signal cannot be separated and recognized, and the preceding vehicle is lost or mistakenly recognized as far away.

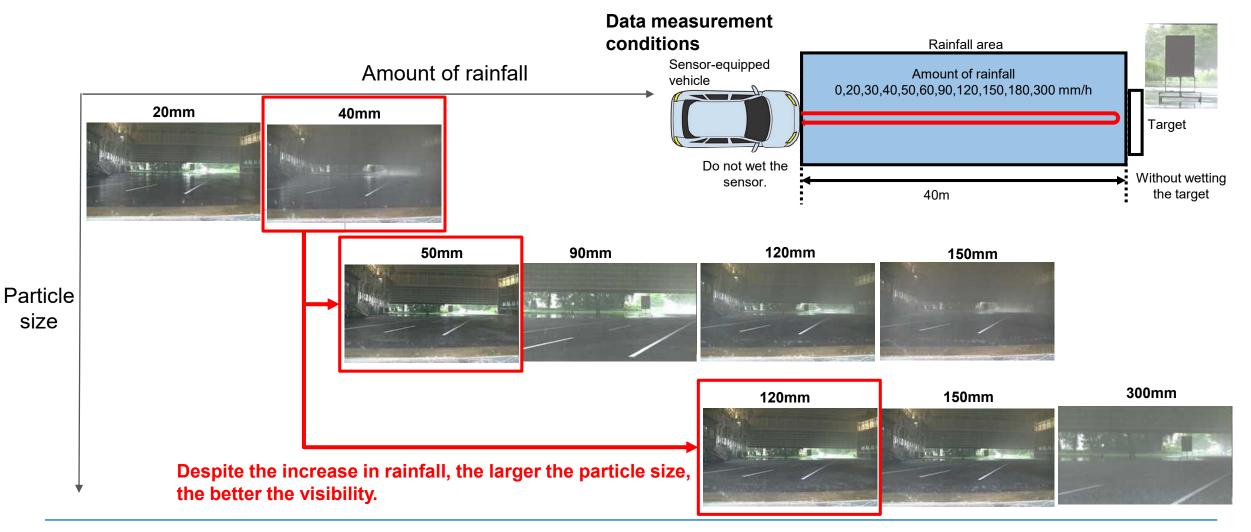
#### Impact of rain on LiDAR

#### Pioneer



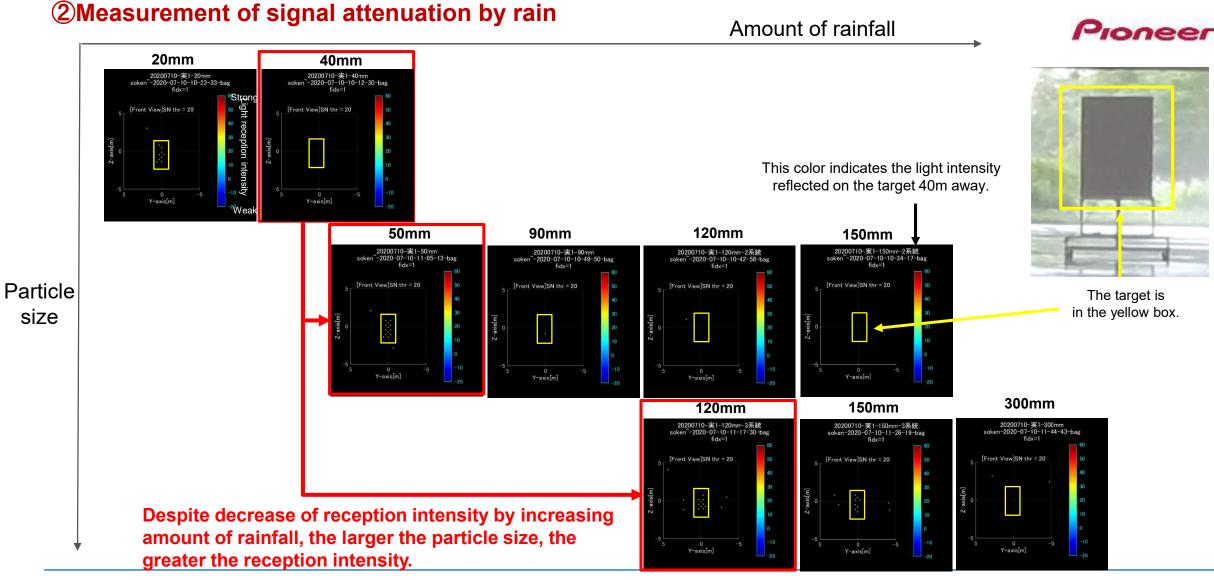
Measured point cloud data




Effect of raindrops on the front surface of the sensor : False Negative
 Attenuation of signal light due to rainfall:False Negative

③Change in the reflection characteristics of light due to raindrops on the target surface: False Negative

(a) Occurrence of false points due to reflection in falling rain droplets: False Positive (5) Occurrence of false points due to specular reflection on wet surfaces : False positive

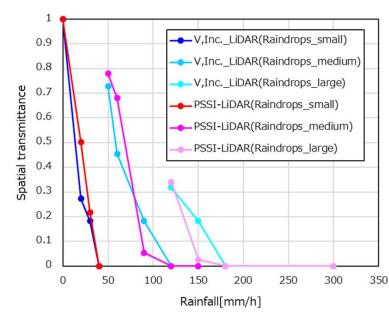

Source : Pioneer Smart Sensing Innovations Corporation. SOKEN, INC. Kanagawa Institute of Technology DIVP® Consortium [Reproduction of Malfunction] Investigate the signal intensity reflected at the target and the frequency of false points occurring in the space by changing amount of rainfall.

#### Understanding the phenomenon in rain experiment facilities



Source : Pioneer Smart Sensing Innovations Corporation. SOKEN, INC. Kanagawa Institute of Technology DIVP® Consortium Pioneer

### [Reproduction of Malfunction] Investigate the signal intensity reflected on the target by changing the amount of rainfall.




Source : Pioneer Smart Sensing Innovations Corporation. SOKEN, INC. Kanagawa Institute of Technology DIVP<sup>®</sup> Consortium

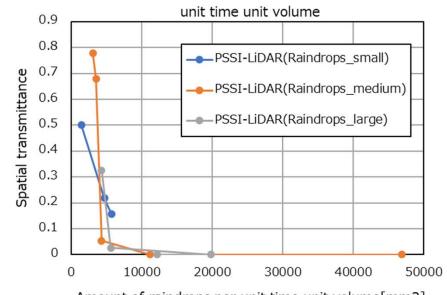
### [Reproduction of Malfunction] Modeling the signal light attenuation by rain.

### Calculate the spatial attenuation rate of light from reflection intensity measured by LiDAR and the amount of rainfall

Spatial transmittance due to precipitation



Calculate the amount of raindrops contained in unit time and unit volume (Raindroplet Space Density) based on the number of raindrops, particle velocity, and particle size measured by a distrometer.


Calculate the density of Raindroplet Space Density (D [mm3/m3]) from the flow velocity, particle size, and number of raindrops.

$$D = \frac{V}{S * t * v}$$

V:Volume of raindrops [m3] S:Distrometer measured area [m2] t:Measurement time [sec] v:Particle velocity

### Statistical modeling of the relationship between the Raindroplet Space Density and the space transmittance rate of signal.

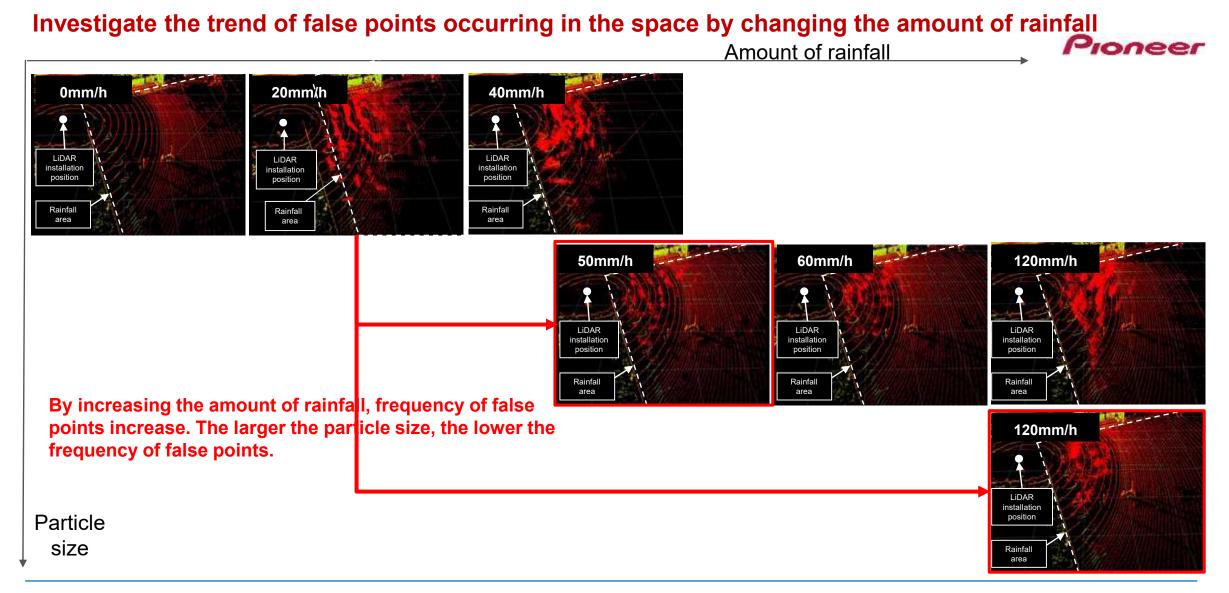
Spatial transmittance by the amount of raindrops per



Amount of raindrops per unit time unit volume[mm3]

#### Attenuation model of light due to rainfall in space

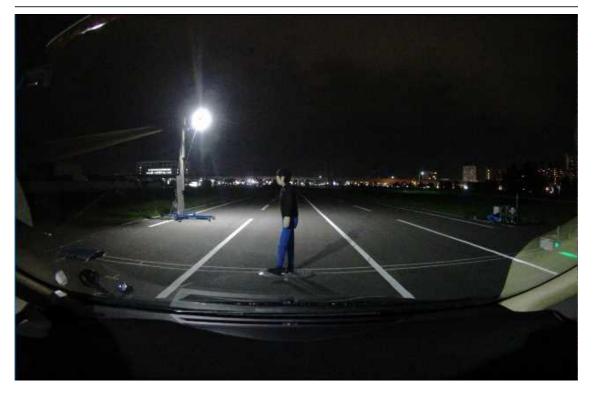
$$\rho = 10^{\left(\frac{-0.00003 * R * D}{10}\right)}$$

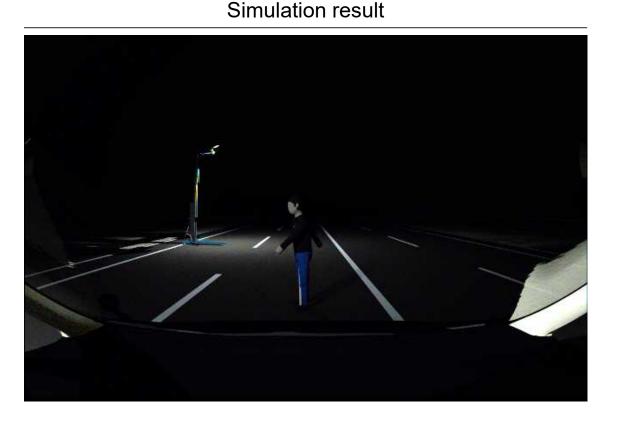

p: Spatial attenuation factor of received light intensity R:Distance to the target D:Raindrop space density

#### Source : Pioneer Smart Sensing Innovations Corporation. SOKEN, INC. Kanagawa Institute of Technology DIVP® Consortium

#### FY2020 Year-end report 88

Pioneer


### [Reproduction of Malfunction] ④Occurrence of false points due to reflection in rain droplets




#### Result of NCAP doll crossing scenario (Jtown) under streetlight at night

Sony Semiconductor Solutions Corporation

Result of actual camera

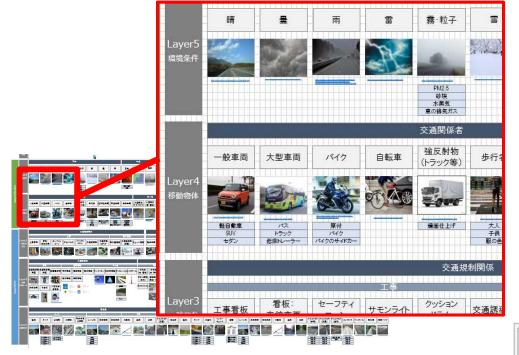




- For the road surface and white lines, the signal levels of the simulation results are reproduced lower than the actual data.
- They are probably due to the accuracy of the streetlight and the ambient light. Give feedback to the environmental model part.

\* \* Display 8bit out of 24bit Source : Sony Semiconductor Solutions Corporation, SOKEN, INC DIVP® Consortium

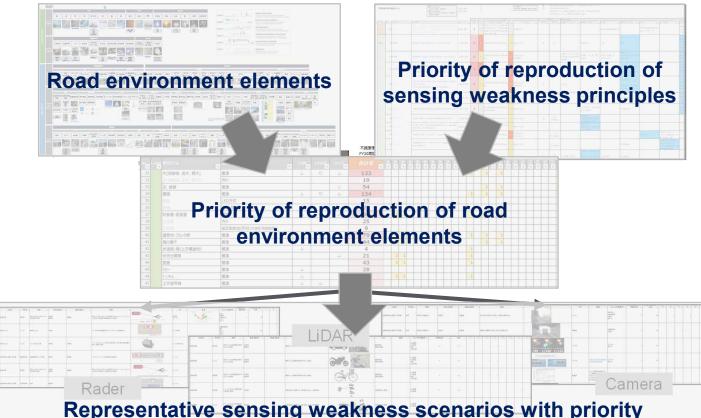
### "Property" owned Environmental & Space design models


Precise Environmental & Space design models

Sensing weakness domain modeling

Sensing weakness scenario analysis

# Determine the weakness to be reproduced and the priority of the scenario using the FMEA approach after identifying factors that affect the occurrence of sensing weakness


#### **Determination of priority reproduction scenarios of malfunctioning**



(1) Identification of elements required for Japan's road environment

Based on the hierarchy of PEGASUS, we identified the elements of Japan's road environment, looked at scenarios and international cooperation.

② Determine sensing weakness scenarios for each sensor, which should be reproduces with priority. These scenario are based on estimation on the priority of the sensing weakness condition (see the next slide) and the result of ①.



Source : SOLIZE Corp. DIVP<sup>®</sup> Consortium SOLIZE

# DIVP<sup>®</sup> is studying how to organize and reproduce the sensing weakness condition in cooperation with "Structure of perception limitation test scenarios" by JAMA

#### Arrangement of weakness principles that should be reproduced with DIVP®

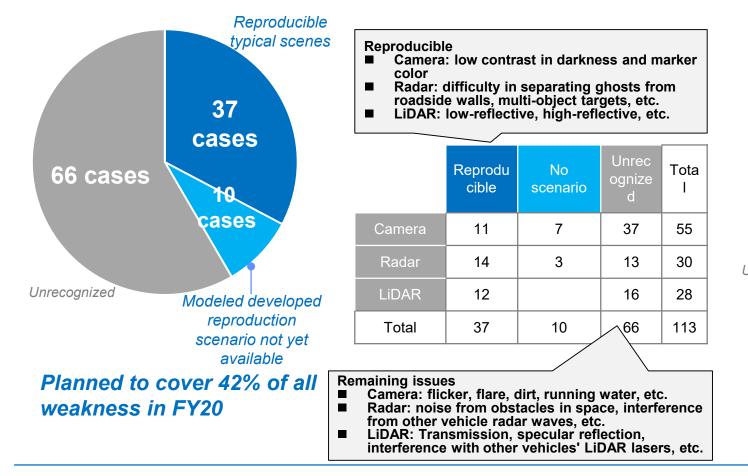
🌈 SOLIZE

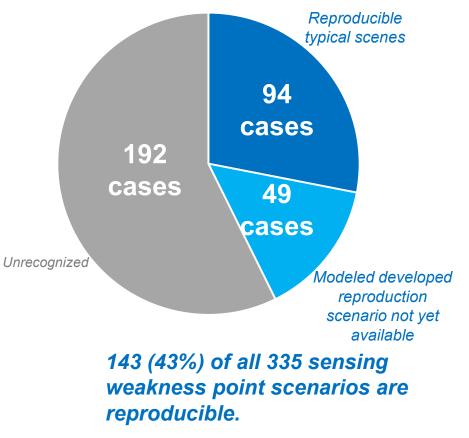
≅FMEA

Structure of perception limitation test scenarios by JAMA ≅**FTA** 

Examination of priority based on the degree of impact / fatality of each sensor and the necessity of simulation

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 不調視象再現の課題まとめ            | 4回20 (Hain FreeNot) :<br>  54 & CO.C.HOM, COTTENT<br>  大変日 (Hain FreeNot) :<br>  大変日 (Hain FreeNot) :<br>  大変日 (Assisted Hain) :<br>  大変日 (Assisted Hain) :<br>  大変日 (Assisted Hain) : | 調整酒(FP)<br>未記酒(FN)    | 大<br>中<br>小 |                                                                      | 大<br>中<br>県立でな水、連州第25、前V&Ltex<br>中 |     | 代表的な条件の<br>代表的なアセッ<br>代表的なアセッ | 再提起可能                              | な全性設証に十分なカバレ<br>再でシナリオがあれば再現<br>デルがない |                        |                               |                                 |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------------------------------------------------------|------------------------------------|-----|-------------------------------|------------------------------------|---------------------------------------|------------------------|-------------------------------|---------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7日ンサー (10) - 不知時時       | * 不明現意                                                                                                                                                                                 | - 100 m               | 221~ 11     | · 数余度 - 长型度望明 - 1-                                                   | - Sime Bit                         |     |                               | モデル化要素<br>3Dモデル(マップ)               |                                       | - 反射率                  | - 根标光谱、电波谱 -                  | line in                         | 142775E - 1                                          |
| Structure of perception limitation test scenarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | ▼ ↑300x                                                                                                                                                                                |                       | 1 *         | ■ 新商度・影響度度相 (*) =<br>●信号規制により、想定と異なき<br>位置をビームが期利できことによ<br>り偽成が発生でき。 | ▼ Sime支付 ▼<br>き. 読み構築信             |     | ×874*                         | 30 = 7.4 (7 + 7)                   | - JDモデル (初世)                          | オキスの圧打手のモデル            | 1                             | 全国<br>ガギスによる規則支考定し<br>たレイトレーシング | <u>センテ表面 マ</u> ュ<br>見<br>え<br>れ                      |
| 認識限界シナリオ体系オーバービュー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21×9 (8 1%T4)           | •税留が描く登園は必要な信号(九)が1か汚る内ない                                                                                                                                                              | 多正法 (FN)              | 6 *         | 記載の読書物を読みてきない                                                        | 中 社主に任め至                           | o   | o                             |                                    | 用版の人物                                 | + (65+                 | n.e.                          |                                 | 2                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | - 時代を明らくの飛びして登場にお客なロントキスト的様子品                                                                                                                                                          | ADD (FN)              | 6 +         | 白泉びした田中の扱いを利用です<br>笑い                                                | 大<br>新美し性み要<br>点点解放修               | ×   | ×.                            | 水を果り、水、熱、標識<br>反対数など高反射体を射<br>した時期 | ERE C. S. E. C.                       | L ・水高、水の豆、 ×<br>・共同性成別 | 大明大<br>(反射大部内メモロ位置す<br>多時に取回) |                                 |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ・戦争い品がは淡大波定され、病し品がに対しる要なコント=<br>ト告帯不定<br>(明事に品がかざ足体の問題で、品い品がかざ足とない)                                                                                                                    | ス<br>ま記語 (FN)         | 9 *         | npact/F                                                              | atality                            | o   |                               | レン大ル                               | essa<br>Jelin <u>c</u>                | <b>1</b>               |                               | ΟΓ                              |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ens                     | Principle of                                                                                                                                                                           | ン<br>ま25項(FN)         | 6 •         | nRULAHHARVEN 😽                                                       | * 新闻L的心理<br>法周期资格                  |     |                               | kran 🕈                             | 3D p                                  | olygo                  |                               |                                 | 3                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | akness for ea                                                                                                                                                                          | <b>Ch</b><br>3日日 (FN) | 4 🕈         | Need-fo                                                              | r sim                              | 1.2 | es/<br>lo                     | •                                  | 经济上提高问题要小数保                           | 8                      | char                          |                                 | stics<br>source                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | уре                     | <b>Sensor</b><br>-FoyR開始日本12日の見よる初月ビウタくほう日外に日                                                                                                                                          | E NIER (FP)           | 2 *         |                                                                      | TV                                 | 24  |                               | •                                  | (Mélelék), Botté                      | ce des                 |                               | auiu                            | Source                                               |
| 1         ненест                                                                                                                                                                                                                                                                                                                                                                                          | 11 A 3 (5 10 L (5 - 7)) | ・総善物(物体)で対象物の見える範疇が少なく認識不可                                                                                                                                                             | 未过流(FN)               | <b>4</b> 🕈  | 同語の頃の発表教徒中能力が低下                                                      | ♥ 脱毛し性の薬                           | o   | の<br>運動発用し                    | •                                  | <b>杜圭金河</b> 得                         | sor m                  |                               |                                 |                                                      |
| 0         CRMERXE         COMERXE         COME                                                                                                                                                                                                                                                                                                                                                         | 5                       | ・販売物(物体)で対象物の見える範囲が少ない、あるいは<br>高物と下がして高み物体と推定                                                                                                                                          | 8 (123) (FP)          | 2 🔹         | 目の品が原因の不要な目前行動に<br>よる平原の活発                                           | 中 録真し性の音                           | Ă   |                               |                                    | 相差型所等<br>(初色に続く、足の天の<br>天い) 末の新       |                        |                               |                                 |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ine in ceuilien         | ・総善物(臣間(周、常、院)) ガノイズとなり道道不可                                                                                                                                                            | ま20日 (FN)             | 9 *         | 日本の次の均差的を放中でまない                                                      | 大 近当旅居住い<br>設正し性必要                 | . × | ා:<br>(ම, මනුරු)              |                                    |                                       |                        |                               | A. R. S                         | 作曲しているウイパ<br>(ワイパによるフロントガ<br>キス表面変化含む)               |
| Unit         Open (a)         Open (a) <th< td=""><td>1969 (B-197</td><td>・販売物(茶用(でィパ、ガキエホれ(でイパ酸含む))) ゼイ<br/>ポンダリジカボ用</td><td>イ<br/>永辺浩 (FN)</td><td>6 *</td><td>開始を成めた客物を放めてきない</td><td>中 粉点し性み要</td><td>2</td><td>े।<br/>(7 र लेकक)</td><td></td><td></td><td></td><td>ll o silli e c</td><td></td><td>ドバルフロントガギス<br/>作動しているワイパ<br/>(ワイパによるフロントガ<br/>年ス表出変化含む)</td></th<> | 1969 (B-197             | ・販売物(茶用(でィパ、ガキエホれ(でイパ酸含む))) ゼイ<br>ポンダリジカボ用                                                                                                                                             | イ<br>永辺浩 (FN)         | 6 *         | 開始を成めた客物を放めてきない                                                      | 中 粉点し性み要                           | 2   | े।<br>(7 र लेकक)              |                                    |                                       |                        | ll o silli e c                |                                 | ドバルフロントガギス<br>作動しているワイパ<br>(ワイパによるフロントガ<br>年ス表出変化含む) |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1779 (8 CP-L (8 CP-L)   | ・対象数の所れ、汚れが対象数を部分的に触し話題不可                                                                                                                                                              | 3.25% (FN)            | 6 *         | 同語の真の問言的を放出できない                                                      | 平 放送したの妻                           | 0   | 0<br>étricis                  | 語:SRS語つ道語                          | ※れたレーンマーカ、月<br>刻<br>前れたレーンマーカ、月       | 12<br>12 - 再感性反射       | ∭ o siña e                    |                                 |                                                      |


# In FY20, 42% of the sensing weakness principle and 43% of the sensing weakness scenario can be reproduced.


#### **Resurgence as of FY20**



Reproducibility of the sensor weakness principle

Reproducibility of the sensor weakness scenario





# Investigate whether the methodology for comprehensive expansion and execution of driving condition scenarios can be applied to sensing weakness scenarios

#### Methodology for Expansion and Executing Driving Condition Scenario

We investigated whether the proposed methodology for comprehensive expansion and execution of driving condition scenarios can be applied to sensing weakness scenarios.

The target methodology is a method proposed by PEGASUS project. This methodology is a three-layered model which layers are functional scenarios, logical scenarios, and concrete scenarios. In this methodology, functional scenarios written in natural languages are converted into logical scenarios with parameter ranges, and finally logical scenarios are transformed into concrete scenarios which are executable in the simulator.

Concept image of PEGASUS scenario methodology

This methodology is a proposed method for comprehensive execution of driving scenarios by developing from abstract functional scenarios to concrete scenarios

| Functional scenario                                                                                                                                            | Logical scenario                                                                                                                                                             | Concrete scenario                                                                                                                                                     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Road network<br>Maximum speed of 100 km/h,<br>Curve of the vehicle road on one<br>side of the three lanes                                                      | Roads. 3.5]m<br>Curve radius [network]<br>Lane width [2.3.0.60.9]m<br>Signal position [0.200] m                                                                              | <u>Road network</u><br>Lane width [3.2]m<br>Curve radius [0.7] m<br>Signal position [150]m                                                                            |  |  |  |  |
| Stationary objects on the road                                                                                                                                 | Stationary objects on the road                                                                                                                                               | Stationary objects on the road                                                                                                                                        |  |  |  |  |
| Animal bodies on the road<br>Automobiles and traffic congestion<br>Interaction: in a slow-moving traffic<br>jam, your vehicle is moving to the<br>middle lane. | Animal bodies on the road<br>Length of traffic congestion<br>[10.200]m<br>Speed of traffic congestion [0.30] m<br>Distance from vehicle [50,300]m<br>Vehicle speed [80130] m | <u>Animal bodies on the road</u><br>Length of traffic congestion [40] m<br>Speed of traffic congestion [30]m<br>Distance from vehicle [200]m<br>Vehicle speed [100] m |  |  |  |  |
| Environment<br>Summer and rain                                                                                                                                 | Environment<br>Temperature [1040] m<br>Rain particle diameter [20100] m                                                                                                      | <u>Environment</u><br>Temperature 20 m<br>Rain particle diameter 100 m                                                                                                |  |  |  |  |
| Abstract "functional<br>scenarios" written in a<br>natural language                                                                                            | Appropriate<br>parameter<br>settings                                                                                                                                         | Feasible "concrete<br>scenario"                                                                                                                                       |  |  |  |  |

Contemporary Solize

# Investigate whether the methodology for comprehensive expansion and execution of driving condition scenarios can be applied to sensing weakness scenarios (cont.)

#### Trial to Apply the Scenario Expansion Methodology for Sensing Weakness Scenarios



In order to explore the possibility to apply the methodology for sensing weakness scenarios, we developed a prototype of an ontology, terms and relations with them, and some syntax patterns for describing sensor malfunction scenarios.



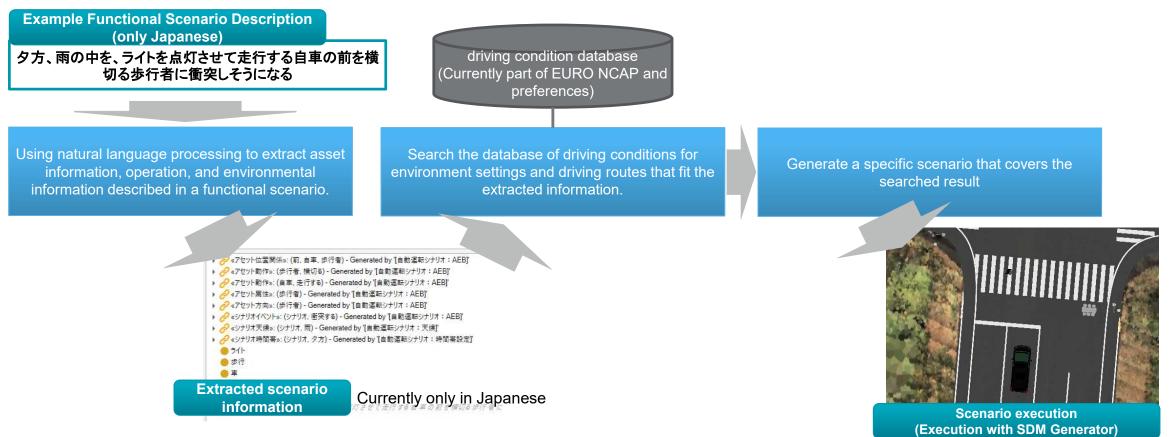


Examples of ontologies for sensing weakness scenarios

For sensing weakness scenario representation, more terms which are unnecessary for driving condition scenarios should be added consistently. Moreover, since one physical phenomenon which causes sensing weakness can affect many other phenomena, relationships between these phenomena should be expressed in the ontology. For example, "rain" affects wet road surface, wet sensor surface, puddles and splashes, etc.

Constructing an ontology containing these complex relationships needs correct understanding of the phenomena and many time-consuming tasks.

| Layer 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Layer 1                                                    | Layer 4                            | Layer 4                     | Layer 4        | Layer 4              | Layer 4           | Layer 4        | Layer 4            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|-----------------------------|----------------|----------------------|-------------------|----------------|--------------------|
| Layer 5<br>雨の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Layer 1<br>片側一車線道路を                                        | こ<br>定速60km/hで                     | Layer 4<br>道なりに走る           | Layer 4<br>他車を | 定速55km/hで            | Layer 4<br>道なりに走る | Layer 4<br>自車が | Layer 4<br>追従する。   |
| FRJUJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 月1回 単線道超を                                                  | 上述OUKITI/TIC                       | 迫なりに走る                      | 18年2           | 走迷55KIII/IIC         | 迫なりに走る            | 日早か            | 1011년9つ。           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | アスファルト                                                     |                                    |                             |                |                      |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ガンアルト                                                      |                                    |                             |                |                      |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 調要因について、単体                                                 | 778/#-+7+ o + +0                   | - 100 ALL 1 - 2             | ※牛士フォッナ(ナト)    | - the effe           |                   |                |                    |
| ほどれにセンサイ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 調要因にしいし、単体                                                 | で完生するものを加.                         | え、周1王とし(9                   | モ生りるものを付う      | U CI'EDX             |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to be made and the                                         |                                    |                             |                |                      |                   |                |                    |
| センサ不調原理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | からのアプローチ例                                                  |                                    |                             |                |                      |                   |                |                    |
| ルチバスのシナリオ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | を作成したい場合                                                   |                                    |                             |                |                      |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                    |                             |                |                      |                   |                |                    |
| Layer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Layer 1                                                    | Layer 4                            | Layer 4                     | Layer 4        | Layer 4              | Layer 4           | Layer 4        | Layer 4            |
| 路側壁のある                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 片側一車線道路を                                                   | 定速60km/hで                          | 道なりに走る                      | 他車を            | 定速55km/hで            | 道なりに走る            | 自車が            | 追従する。              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                    |                             |                |                      |                   |                |                    |
| Layer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Layer 4                                                    | Layer 4                            | Layer 4                     | Layer 4        | Layer 4              | Layer 4           | Layer 4        |                    |
| †側一車線道路4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | を 定速60km/hで                                                | 道なりに走る                             | 他車を                         | 定速55km/hで      | 道なりに走る               | 自車が               | 追従する。          |                    |
| 坦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                    |                             |                |                      |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                    |                             |                |                      |                   |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                    |                             |                |                      |                   |                |                    |
| 9—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                    |                             |                |                      |                   |                |                    |
| <mark>'スファルト</mark><br>ヨー<br>?ルチパスを発生さt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | さるセンサ不調要因(1                                                | 単体/属性)をシナ!                         | Jオに加えて作ら                    | ŝ.             |                      |                   |                |                    |
| ヨー<br>アルチパスを発生させ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | 単体/属性)をシナ!                         | Jオに加えて作ら                    | R.             |                      |                   |                |                    |
| )—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | 単体/属性)をシナ!                         | Jオに加えて作ら                    | ¢.             |                      |                   |                |                    |
| ヨー<br>ルチパスを発生させ<br>センサ不調名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | からのアプローチ例                                                  | 単体/属性)をシナ!                         | リオに加えて作ら                    | 2              |                      |                   |                |                    |
| ヨー<br>コルチバスを発生させ<br>センサ不調名称<br>後知のシナリオを                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | からのアプローチ例                                                  |                                    |                             | Ç              |                      |                   |                |                    |
| ヨー<br>コルチバスを発生させ<br>センサ不調名称<br>後知のシナリオを                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | からのアプローチ例<br>作成したい場合                                       |                                    |                             | 2              |                      |                   |                |                    |
| ヨー<br>アルチパスを発生させ<br>センサ不調名称<br>を検知のシナリオを                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | からのアプローチ例<br>作成したい場合                                       |                                    |                             | ž              |                      |                   |                |                    |
| ヨー<br>ルチバスを発生させ<br>センサ不調名称<br>を検知のシナリオを<br>を検知を発生させる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | からのアプローチ例<br>作成したい場合                                       |                                    |                             | Ş              |                      |                   |                |                    |
| 9<br>ルチパスを発生させ<br>センサ不調名称<br>検知のシナリオを<br>後知を発生させる<br>がた同様                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | からのアプローチ例<br>作成したい場合<br>5センサ不調要因(単作                        |                                    |                             | 2              |                      |                   |                |                    |
| <ul> <li>サービンサインスを発生させ</li> <li>センサイン調名称</li> <li>(検知のシナリオを</li> <li>(検知を発生させる)</li> <li>(地)のシナリオを</li> <li>(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシャンク(地)のシ</li></ul> | からのアプローチ例<br>作成したい場合<br>5センサ不調要因(単<br>からのアプローチ             | 本/属性)をシナリオ                         | に加えて作成                      |                | l aver 4             | laver 4           | l aver 4       | laver 4            |
| ロー<br>ルチバスを発生させ<br>センサ不調名称<br>た検知のシナリオを<br>た検知を発生させる<br>並光も同様<br>センサ不調要因<br>Layer 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | からのアプローチ例<br>作成したい場合<br>Sセンサ不調要因(単<br>からのアプローチ<br>Layer 1  | 本/属性)をシナリオ<br>Layer 4              | に加えて作成<br>Layer 4           | Layer 4        | Layer 4<br>定读55km/h产 | Layer 4<br>道なりに走る | Layer 4<br>白車が | Layer 4<br>jatras. |
| ロー<br>ルチバスを発生させ<br>センサ不調名称<br>検知のシナリオを<br>検知を発生させる<br>せンサ不調要因<br>Layer 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | からのアプローチ例<br>作成したい場合<br>Sセンサ不調要因(単作<br>からのアプローチ<br>Layer 1 | 本/属性)をシナリオ<br>Layer 4              | に加えて作成                      |                | Laver 4<br>定速55km/hで | Layer 4<br>道なりに走る | Layer 4<br>自車が | Layer 4<br>追従する。   |
| <ul> <li>リールチバスを発生させ</li> <li>センサ不調名称</li> <li>検知のシナリオを</li> <li>検知を発生させる</li> <li>単光も同様</li> <li>センサ不調要因</li> <li>Layer 5</li> <li>日中・晴れ・逆光の</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | からのアプローチ例<br>作成したい場合<br>Sセンサ不調要因(単<br>からのアプローチ<br>Layer 1  | 本/属性)をシナリオ<br>Layer 4<br>定速60km/hで | に加えて作成<br>Layer 4<br>道なりに走る | Layer 4        |                      |                   |                |                    |


### Examples of syntax patterns for sensing weakness scenarios

As the ontology becomes more complex, so does the scenario representation. The syntax pattens for it also become more complicated so that they tend to be difficult to function as syntax templates.

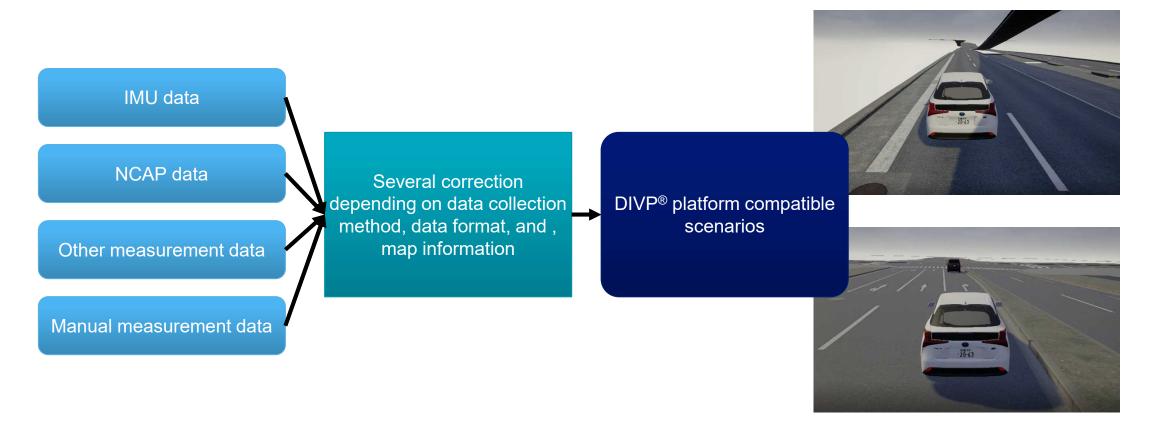
# Implement a scenario expansion software in order to investigate whether the methodology for expansion and execution of scenarios can be applied to DIVP<sup>®</sup> platform

#### Implementing a prototype for scenario expansion

We confirmed that scenarios written in natural language can be converted to executable scenarios with XML files simulating databases.



For supporting sensing weakness scenarios with this software, some information sources such as a database of parameters for sensing weakness phenomena would be needed.


Source : SOLIZE Corp. DIVP<sup>®</sup> Consortium SOLIZE

### Develop a convert program to convert real measurement data into executable scenarios for DIVP<sup>®</sup> platform, and convert and check all the scenarios

#### Develop a convert program and check all the result

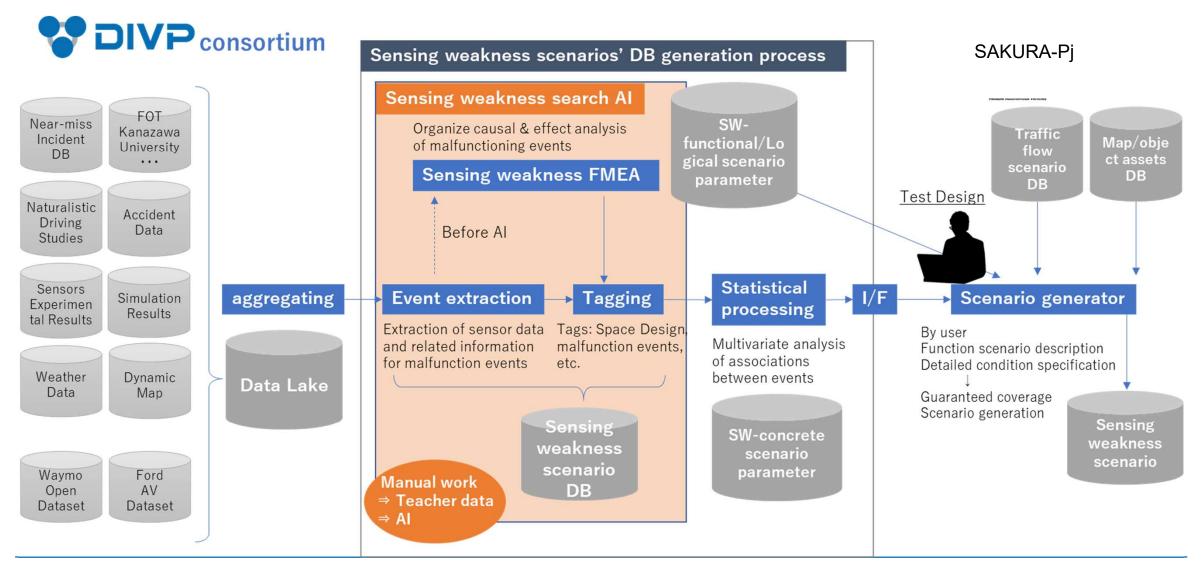


We developed a convert program which supports all types of measurement data measured in each verification phase, such as pre-verification, basic verification, sensor malfunction verification, and expandability verification.

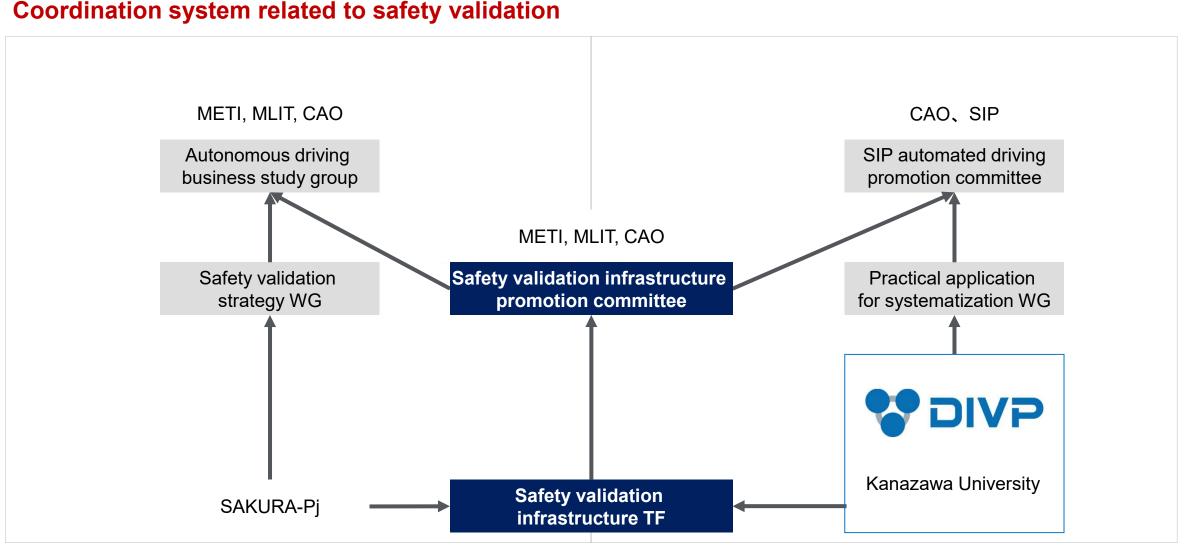


#### A prototype implementation of scenario development and generation tool is implemented This tool supports only a part of EURO NCAP based scenarios

#### **Progress on Scenario Development function**




The scenario development function supports only a small part of EURO NCAP based scenario currently. And we need more effort to execute these scenarios on DIVP<sup>®</sup> platform

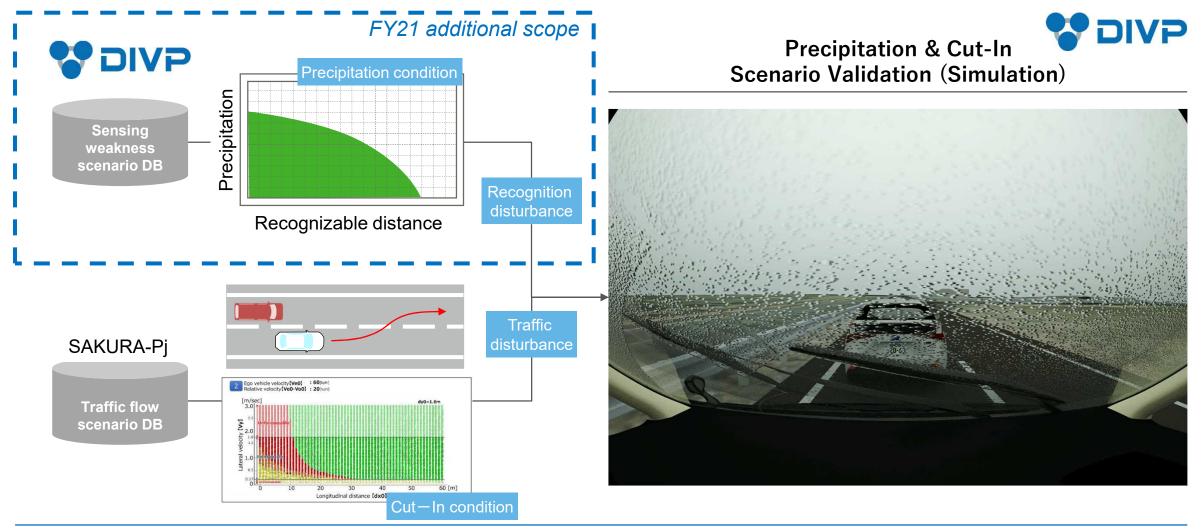

| Action Item                                                           | Initial goal                                                                                                                                     | Level of achievement                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Requirement analysis on sensing weakness scenarios                    | List and prioritize sensing weakness scenarios<br>and determine a validation method of<br>scenarios                                              | Completed on listing and prioritizing them, but<br>more effort to determine a validation method is<br>needed                                                                                                          |  |  |  |  |
| Construction of a description method for sensor malfunction scenarios | Construct a method for prioritized scenarios                                                                                                     | Completed on construction a method for a part of<br>EURO NCAP scenarios without sensing weakness.<br>More effort to describe sensor malfunction is<br>needed, including radical change of the<br>methodology          |  |  |  |  |
| Implement a tool for generate sensing weakness scenarios              | Implement a tool to convert measurement<br>data into scenarios<br>Implement a tool to develop prioritized<br>scenario sensing weakness scenarios | Completed on implementation a tool to convert<br>measurement data into scenarios<br>Completed on construction a method for a part of<br>EURO NCAP scenarios. More effort to describe<br>more complex method is needed |  |  |  |  |
| Execute sensing weakness scenarios                                    | Implement a binding tool between sensor generation tool and DIVP <sup>®</sup> platform                                                           | Completed implementing a tool with SDM generator. More effort to bind a scenario generator with DIVP <sup>®</sup> simulation platform                                                                                 |  |  |  |  |

#### DIVP® promotes the construction of DB focusing on sensing weakness

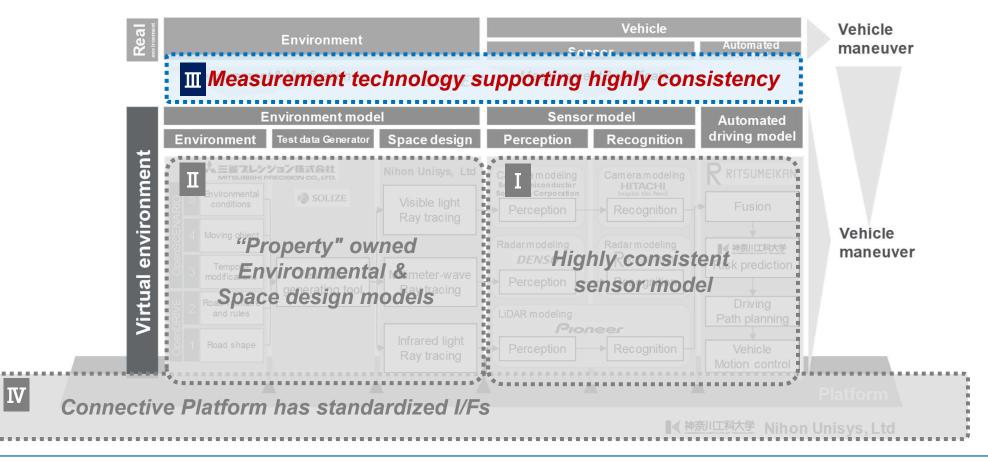
#### **DB** generation process



## Establish and deepen cooperation with other SIP projects and the SAKURA Project to review the safety validation infrastructure TF

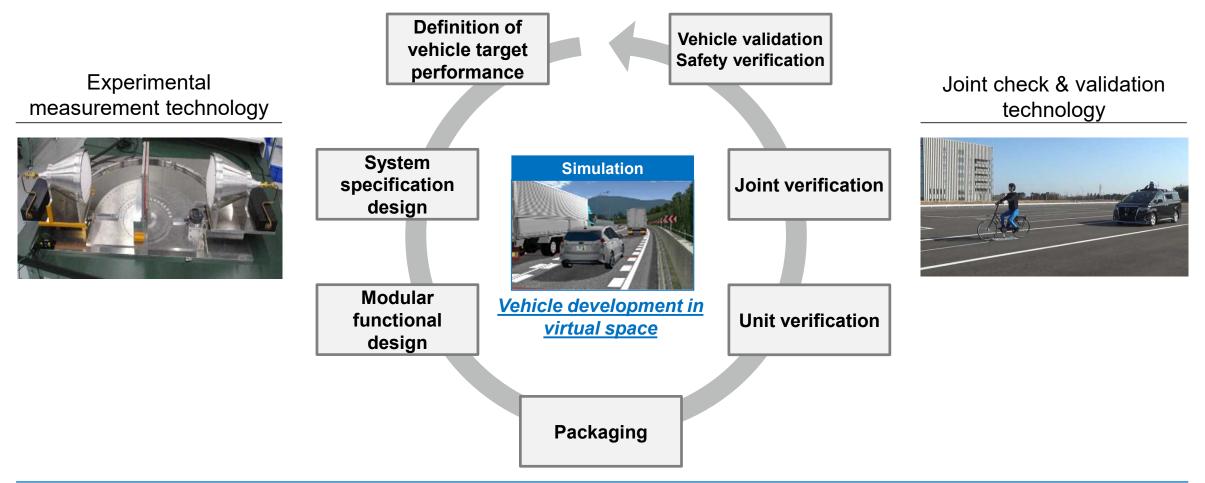



#### Source : Excerpts from JAMA's document


DIVP<sup>®</sup> Consortium

Construction of DB focusing on sensor weakness, and simulation based Validation combining traffic & recognition disturbance through collaboration with SAKURA-Pj

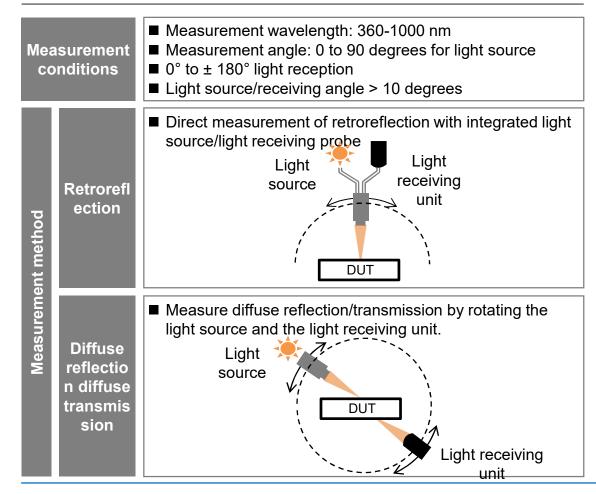
#### DB Collaboration (e.g. Precipitation & Cut-In Scenario Validation)




### FY2020 outcome



Process model generation through "modeling based on experimental measurement" and "model verification based on experimental validation"


#### **Modeling process**

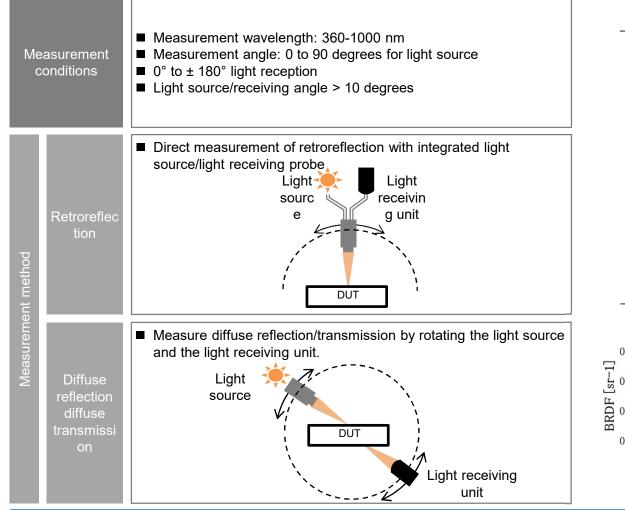


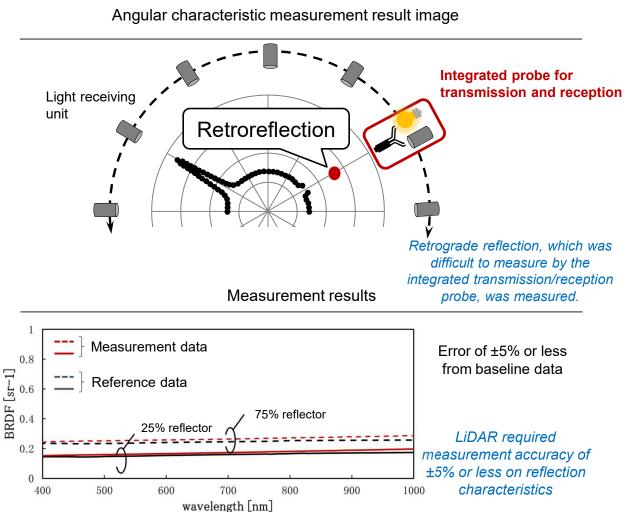
### Each property model is guaranteed at a high level of realization and consistency by the advanced measurement technology of DIVP<sup>®</sup>

#### Measurement technology that guarantees a high level of consistency

System for measuring visible and infrared light







Source : SOKEN, INC DIVP<sup>®</sup> Consortium

SOKEN

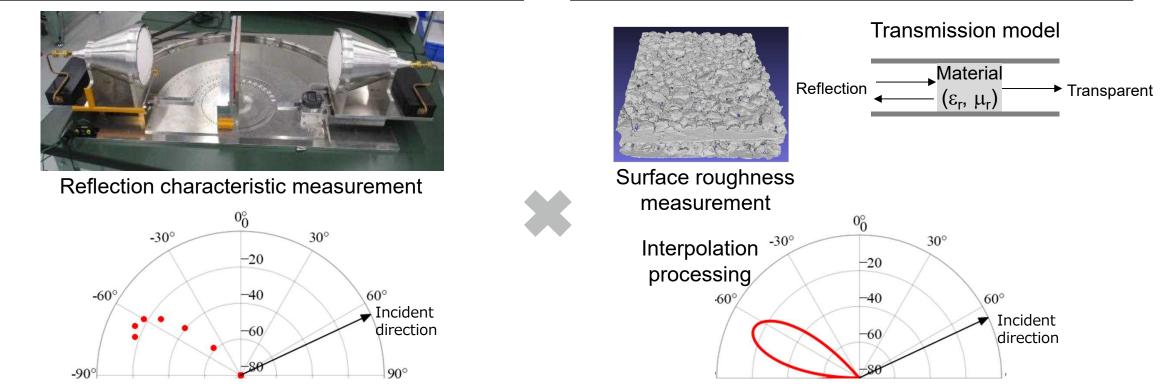
#### [Environmental Model Construction] The measurement system was designed and manufactured on a trial basis, and measurement accuracy sufficient for verifying sensor consistency was achieved.

#### System for measuring visible and infrared light





Source : SOKEN, INC DIVP<sup>®</sup> Consortium


SOKEN

Achieves highly consistent environment modeling with reflection characteristics by experimental measurement compared with the conventional theoretical formula Sim.

#### Efforts to create radar reflectance data

Experimental characteristic measurement

**SOKEN** Interpolation processing of the theoretical formulas based on measurement results

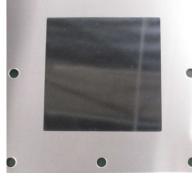


Measure surface and material characteristics as well as material reflection characteristics Create reflection data for interpolation processing of the theoretical formulas

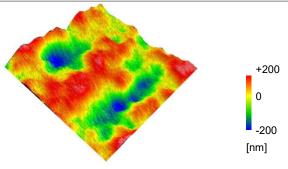
Source : SOKEN, INC DIVP<sup>®</sup> Consortium

# Manufacturing, measurement, and visualization technologies to "make invisible objects visible" play an important role

#### **Measurement technology supporting DIVP®?**


Manufacturing technology

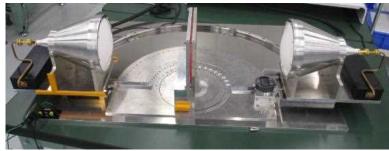
- We have the world's highest level of precision processing skills and facilities, enabling us to produce original measuring instruments and test samples that other companies cannot produce.
- With high-precision measurement technology and original measurement equipment/sensors, it is possible to measure items that other companies cannot measure.


Measurement/visualization technology

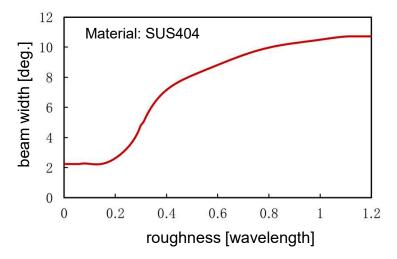
Analysis and discovery

 Multifaceted analysis of measurement results to discover new knowledge and relevance not previously available




Surface treatment in nm




Surface roughness measurement in nm

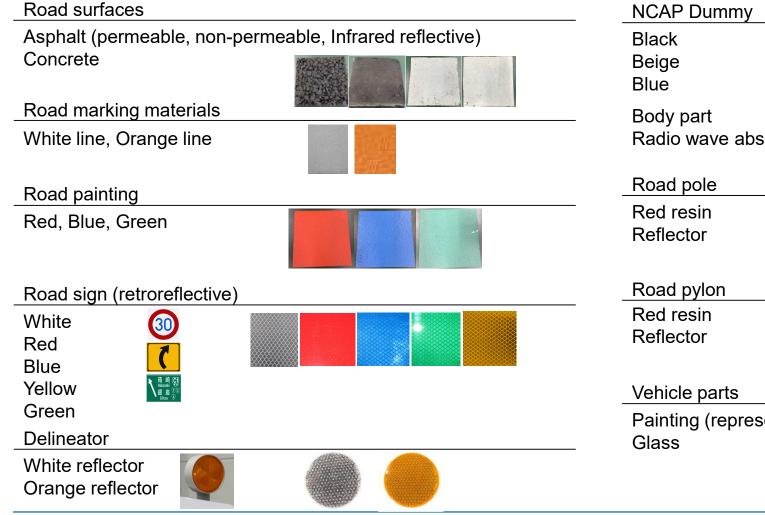


3D printer + plating process Surface roughness sample for Radar



Measurement of dielectric constant and magnetic permeability by free space method



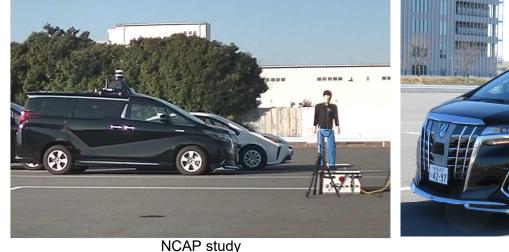

Example) Relationship between surface roughness and reflected beam width

#### Source : SOKEN, INC DIVP<sup>®</sup> Consortium

SOKEN

measured the material reflection characteristics at each sensor wavelength (visible light region, infrared light region, millimeter wave band) to verify the simulation and measurement results.

#### **Measured materials**




# Radio wave absorber Painting (representative color)

Source : SOKEN, INC DIVP<sup>®</sup> Consortium

# Constructed an experimental vehicle for high-precision data measurement for verification of consistency of simulation from NCAP/ALKS validation

#### **Measurement Technology Supporting DIVP® (Experimental Vehicles)**







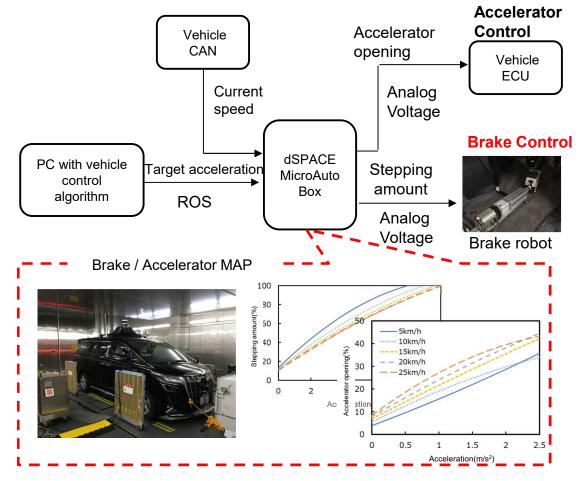
sensing weakness simulation experiment on public roads



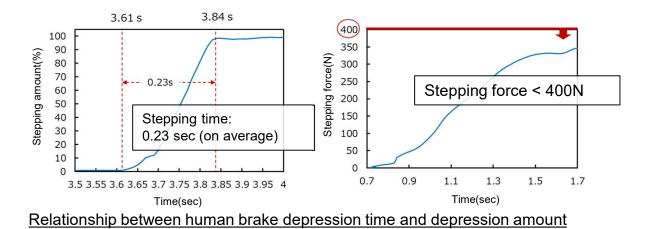
Measurement vehicle

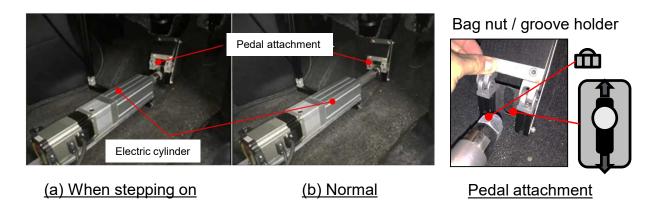
Asset enabled business experiments using vehicle dummies (GSTs)

Automatic brake control robot vehicle in


High-precision GNSS vehicle inertial device IMU

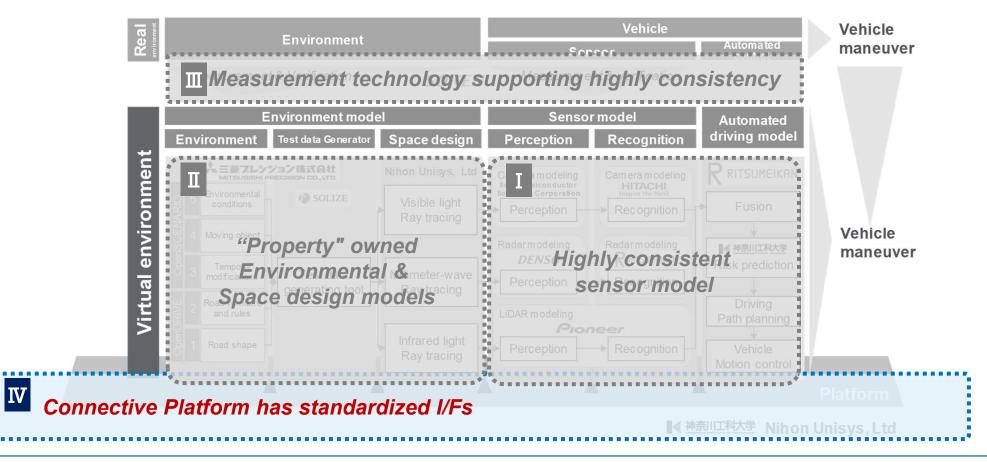
Hi-speed, large-capacity measurement system


Sensor vehicle-mounted technology for vehicle inspection


## Realized an automatic brake control system that can respond to actual emergency braking operating conditions and has a structure that is easy to install in a vehicle.

#### **Measurement Technology Supporting DIVP®** (Autonomous Brake control system)




Configuration of automatic brake control system





Brake robot unit to reproduce the actual driver's movement

## FY2020 outcome

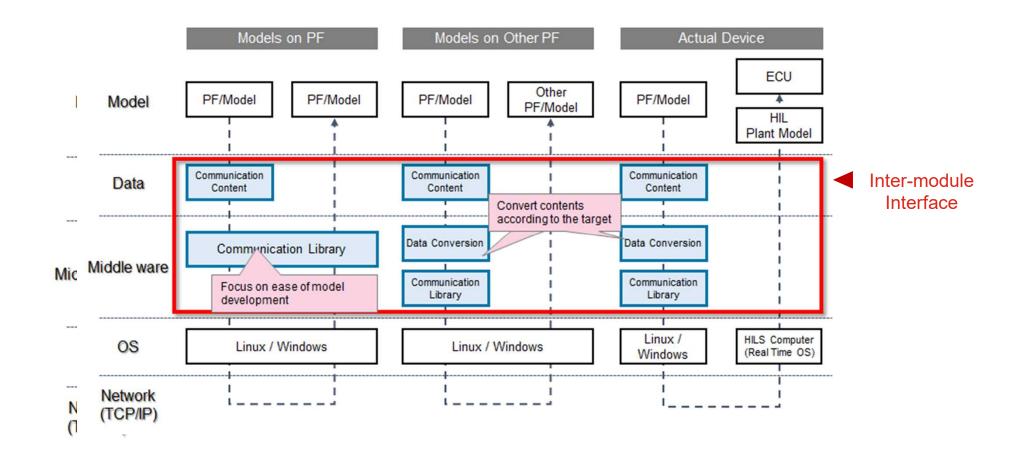


# Simulation PF up to V0.7 has been released, specifications are written for detailed specifications, and knowledge is accumulated

#### **DIVP® Status of Function Extension (Join Validation Status)**



| Ver  | Contents of the release                                                        | Environment model                                                                                                                                                                                                                                                                                            | Sensor model                                                                                                                                                                                                                            | Automatic operation model                                                                                                |
|------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| V0.1 | PF for integration validation (1st edition)                                    | MAP JTown reproduction                                                                                                                                                                                                                                                                                       | <ul> <li>Combine all sensor (Camera, Radar, LiDAR) based models</li> </ul>                                                                                                                                                              | • -                                                                                                                      |
| V0.2 | Pre-verification PF                                                            | <ul> <li>■ Adding assets</li> <li>✓ Alphard</li> </ul>                                                                                                                                                                                                                                                       | <ul> <li>Adoption of CUDA (distance/speed FFT) for the Radar<br/>sensor model</li> </ul>                                                                                                                                                | <ul> <li>Construction of a reference<br/>automatic operation model<br/>using a positive resolution<br/>sensor</li> </ul> |
| V0.3 | Basic verification PF                                                          | <ul> <li>Reproduction of MAP JTOWn (10cm increments)</li> <li>Reproduced sky light clouds and slight clouds.</li> <li>Adding assets         <ul> <li>NCAP pedestrian/bicycle dummy</li> <li>Addition of parts to Alphard interior (windshields, mirrors, etc.)</li> </ul> </li> </ul>                        | <ul> <li>Addition of functions</li> <li>Changing Camera space drawing to IMX490 equivalent</li> <li>Addition of Optix library model for LiDAR spatial drawing</li> <li>Radar space drawing changed to PO approximation model</li> </ul> | Combine<br>Camera/Radar/LiDAR<br>recognition model                                                                       |
| V0.4 | -                                                                              | Unify the scenario coordinate system into the right hand system.                                                                                                                                                                                                                                             | <ul> <li>Updating of LiDAR spatial drawing (e.g., vehicle position interpolation)</li> </ul>                                                                                                                                            | <ul> <li>External vehicle model<br/>coordination function added<br/>(with CarMaker)</li> </ul>                           |
| V0.5 | NCAP, ALKS Verification<br>PF                                                  | <ul> <li>JARI Specific Environment Test Site Reproduction</li> <li>Atmospheric light: September 12, 2020, light cloudy, light cloudy added</li> <li>Adding assets</li> <li>✓ GST (NCAP dummy vehicle),</li> <li>✓ NCAP dummy vehicle balloon</li> <li>✓ Alphard Black (for targets and obstacles)</li> </ul> | Sony camera IMX490 model operable<br>(The model must be provided by SSS.)                                                                                                                                                               | <ul> <li>Construction of an automatic<br/>operation model environment<br/>including recognition models</li> </ul>        |
| V0.6 | Sensing weakness<br>validation release                                         | <ul> <li>Adding assets</li> <li>Alpha (light source)</li> <li>Prius (light source, black)</li> <li>NCAP dummy (black leather)</li> <li>Manholes and corrugated cardboard</li> <li>NCAP street lights at night</li> </ul>                                                                                     | <ul> <li>PSSI LiDAR model can be operated.<br/>(The model must be provided by PSSI.)</li> </ul>                                                                                                                                         | -                                                                                                                        |
| V0.7 | Tokyo Metropolitan<br>Highlands C1/Odaiba<br>Scalability Assessment<br>Release | <ul> <li>Map Metropolitan Higher C1/Odaiba Reproduction</li> <li>Atmospheric light, light clouds, sunny November 25, 2020<br/>Weather, slightly cloudy, and cloudy on December 23, 2020</li> </ul>                                                                                                           | Addition of specular component to LiDAR reflectance                                                                                                                                                                                     | ■ -                                                                                                                      |

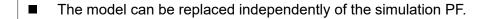

## **Connective Platform has standardized I/Fs**

Standard I/F study

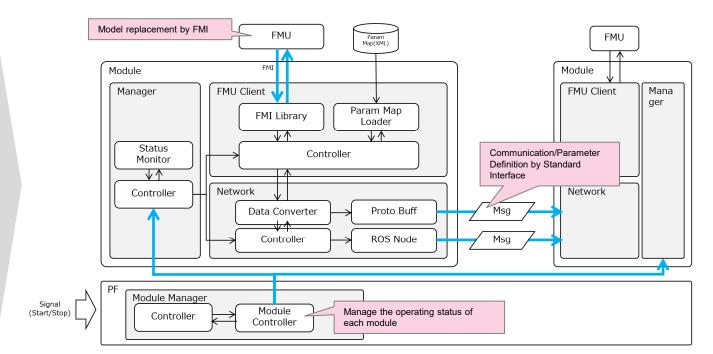
Comprehensive validation method study

# Considering the compatibility and scalability of future elemental technology advances and the expansion of the use of simulated PF

Examination of specifications for inter-module interfaces that ensure scalability between various verification Nihon Unisys, Ltd and validation environments



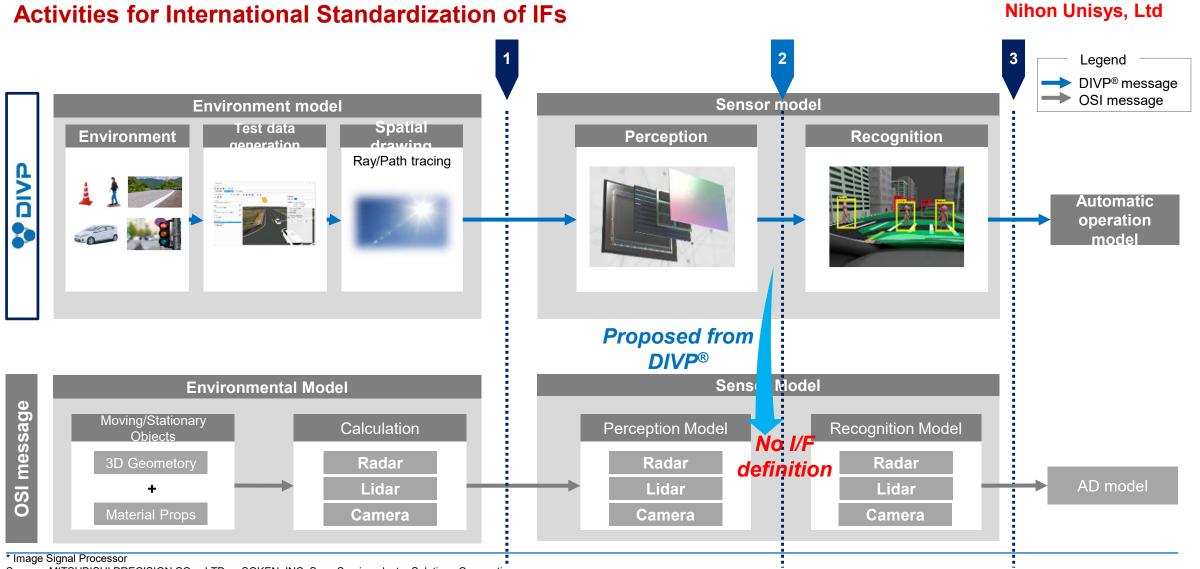

# Creation of prototypes for communication/control between modules in consideration of specifications for inter-module interface


#### Prototype of the inter-module interface

Nihon Unisys, Ltd

Requirements for inter-module interface




- Input/output parameters can be defined in a format independent of the simulation PF or communication method.
- Must be able to connect to modules distributed among multiple computers or modules on other systems via the network.
- When communicating with modules on other systems, communication from modules on the simulation PF should be possible without being aware of the difference.
- Operation status of each module shall be controlled (abnormal detection, vitality monitoring, start/stop).



\*Prototype schematic

Based on the knowledge gained in prototyping, the new module replacement mechanism will be reflected in future PF simulation development.

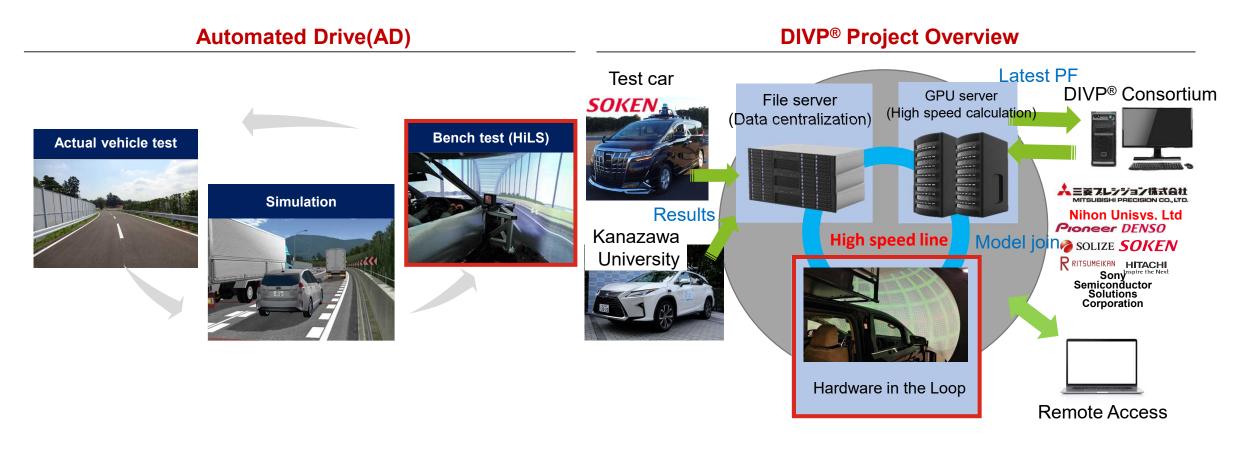
# Through international collaboration projects with Germany's VIVALDI, and ASAM and proposed an interface specification for AD safety validation focusing on sensors



Source : MITSUBISHI PRECISION CO., LTD., SOKEN, INC, Sony Semiconductor Solutions Corporation

DIVP<sup>®</sup> Consortium

FY2020 Year-end report 117


### **Connective Platform has standardized I/Fs**

Standard I/F study

Comprehensive validation method study

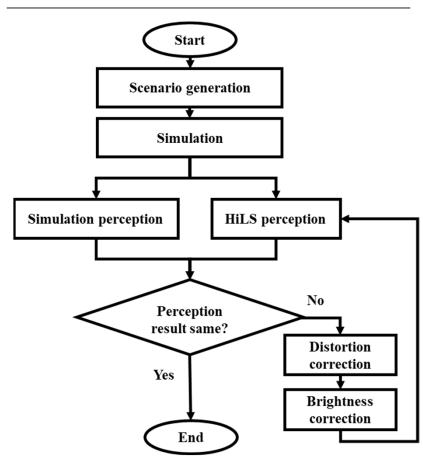
#### [Camera HiLS\*] Construct HiLS using injection technology for future black box validations, and study validation possibilities

## Camera HiLS Construction



#### [Camera HiLS] Construct HiLS using injection technology for future black box validations, and study validation possibilities




#### [Camera HiLS]

#### Verification of consistency by comparison between simulation and HiLS perception

#### **Consistency verification of perception**



Test method



#### Distortion correction procedure

| Phase | Overview                                                             |
|-------|----------------------------------------------------------------------|
| 1     | Detect intersection data from image data                             |
| 2     | Delete false points from intersection data                           |
| 3     | Add adjacent point data to intersection data                         |
| 4     | Add undetected point data to intersection data                       |
| 5     | Apply homography transformation                                      |
| 6     | Detect intersection data from image data after distortion correction |
| 7     | Verify distortion correction                                         |

#### **Brightness correction procedure**

| Phase | Overview                                                                |  |
|-------|-------------------------------------------------------------------------|--|
| 1     | Get pixel-by-pixel RGB data from image data                             |  |
| 2     | Calculate gain error and offset error                                   |  |
| 3     | Apply brightness correction formula                                     |  |
| 4     | Get pixel-by-pixel RGB data from image data after brightness correction |  |
| 5     | Verify brightness correction                                            |  |

#### [Camera HiLS]

#### Distortion correction using RANSAC's robust estimation algorithm is well suited

#### **Results (Distortion Correction)**



#### **Comparing Distortion Correction Algorithm**

**Results of distortion correction** 

| Simulation             | HiLS (Method:NORMAL) | Position    | Before correction | After correction<br>(NORMAL) | After correction<br>(RANSAC) | After correction<br>(LEMDS) |
|------------------------|----------------------|-------------|-------------------|------------------------------|------------------------------|-----------------------------|
| • • •                  | •                    | Upper left  | 37                | 41                           | 22                           | 26                          |
|                        |                      | Lower left  | 41                | 17                           | 16                           | 113                         |
| 0                      | •                    | Center      | 52                | 24                           | 24                           | 25                          |
| •                      | •                    | Upper right | 46                | 20                           | 9                            | 61                          |
|                        |                      | Lower right | 35                | 15                           | 10                           | 10                          |
|                        |                      |             |                   |                              |                              |                             |
| HiLS (Method : RANSAC) | HiLS (Method:LEMDS)  |             |                   |                              |                              |                             |

Source : Kanagawa Institute of Technology, DIVP<sup>®</sup> Consortium

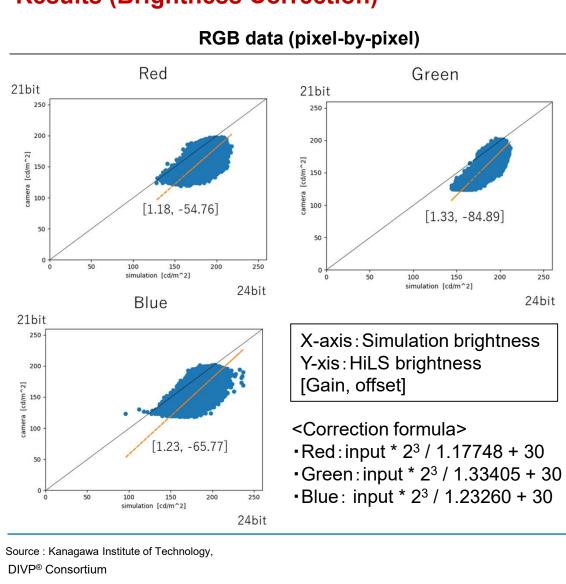
#### [Camera HiLS]

#### Correction formula can be applied to brightness correction

#### **Results (Brightness Correction)**



FY2020 Year-end report 123

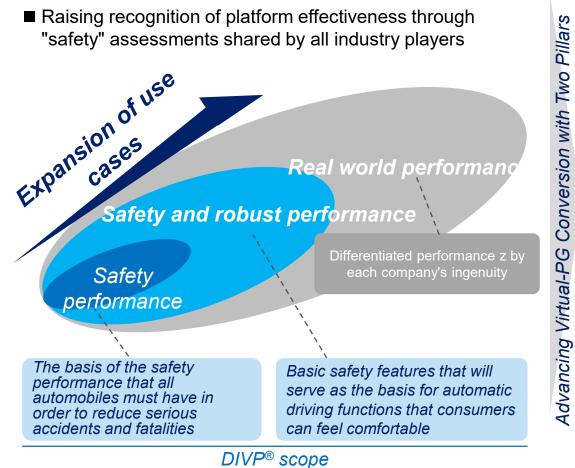

HiLS

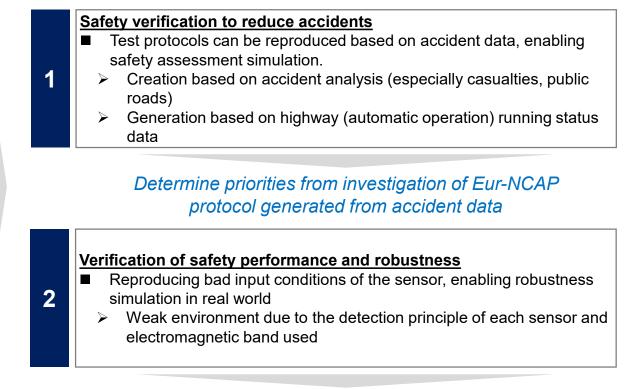
**Results of brightness correction** 

By getting pixel-by-pixel RGB data from image

data, correction formula can be applied

Simulation

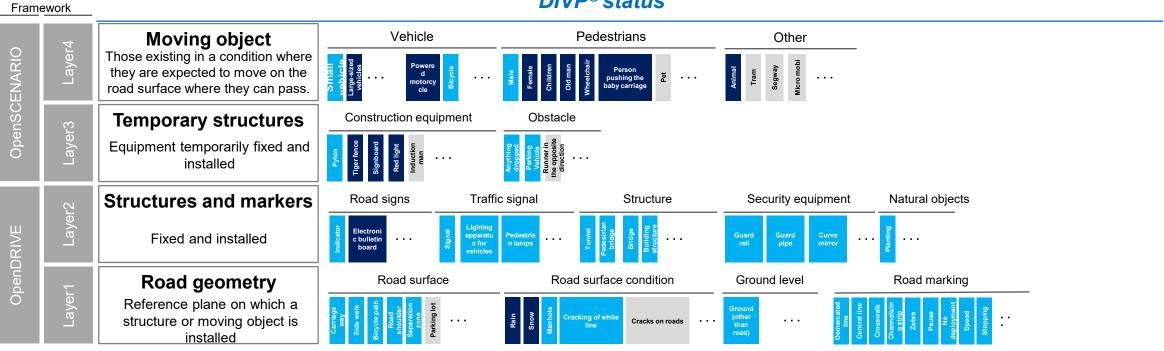




## Virtual-PG / CG

# In FY2020, along with improving the simulation accuracy based on consistency verification, we will develop a Virtual-PG (Proving Group) and reproduce some NCAP protocols

#### **Virtual-PG Expansion Policy**

Roadmap for Expanding Use Cases



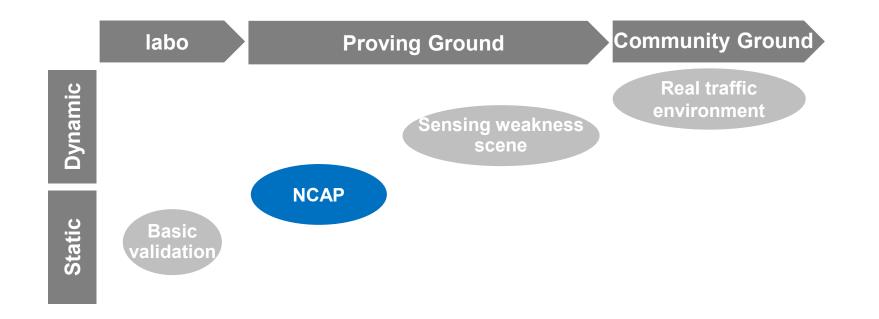



Determine priorities from DIVP<sup>®</sup> Consortium participating suppliers and OEM communication content

#### Data base structuring

European

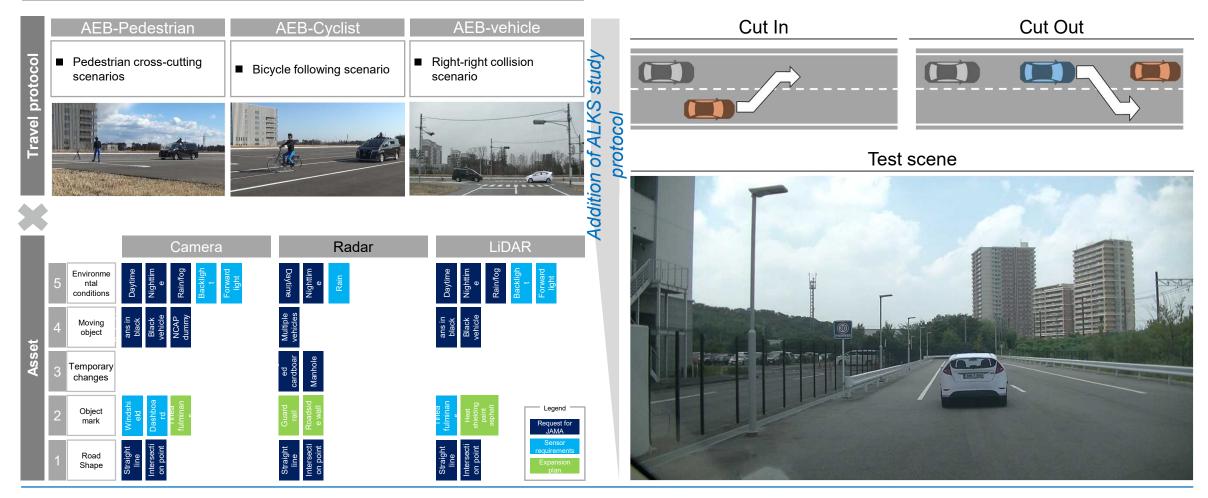



DIVP<sup>®</sup> status

# Legend Implemented within FY2020 Implemented from FY2021 onward Low Priority

三菱スレシジョン様

MITSUBISHI PRECISION CO., LTD.


## Virtual-PG / CG



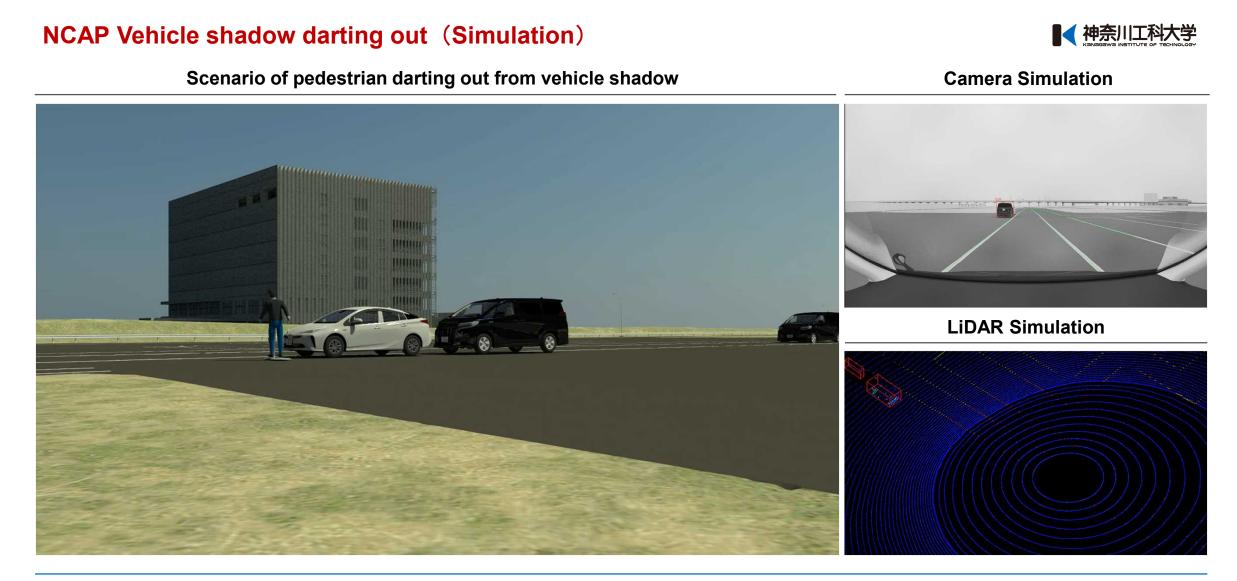
# Based on the results of matching the priority of the weakness requirements with JAMA, experimental was carried out in September, and the test protocol of ALKS was added

#### **Experimental Conditions for Cognitive Malfunctions (9/7 to 9/18)**

weakness scenarios and assets addressed in the experiment

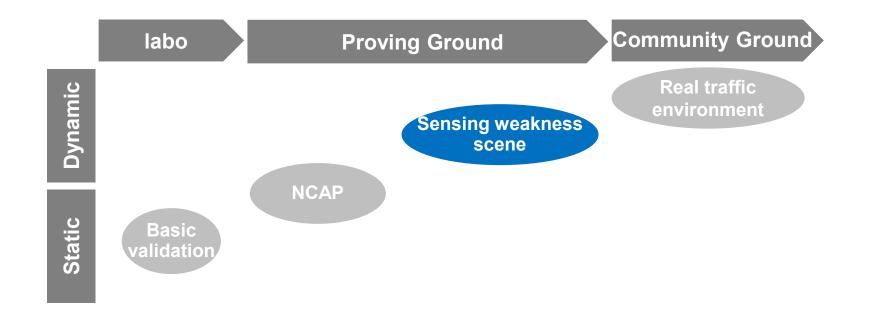


Source : SOKEN, INC DIVP<sup>®</sup> Consortium


# Started to reproduce NCAP "Vehicle shadow darting out" by experimental measurement at Proving Ground

#### NCAP Vehicle shadow darting out

SOKEN




## Started to reproduce NCAP "Vehicle shadow darting out" by experimental measurement at Proving Ground



Source : Kanagawa Institute of technology DIVP<sup>®</sup> Consortium

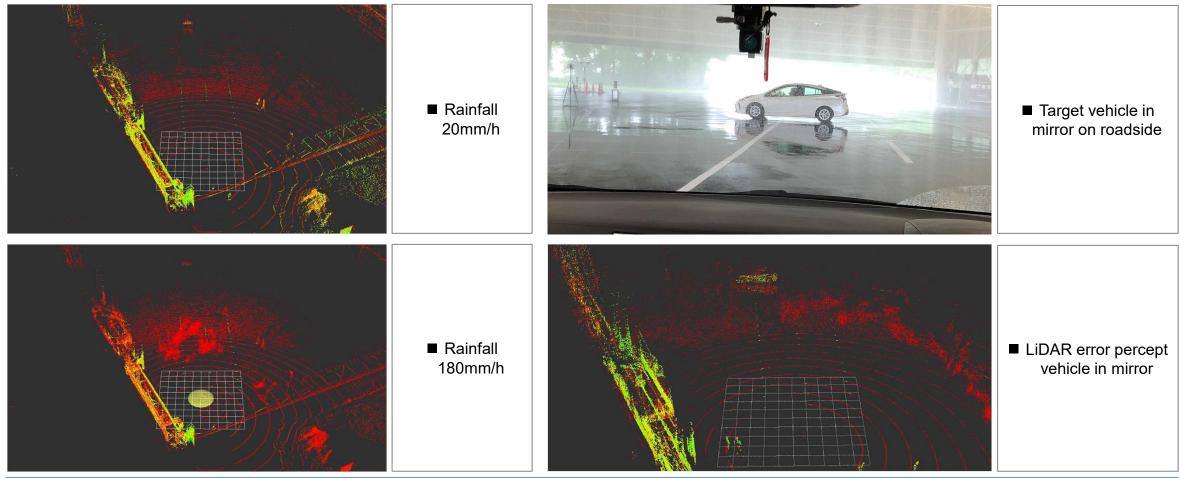
## Virtual-PG / CG



#### Intended to construct Virtual-PG by acquiring sensor data in Euro-NCAP scenario in PG

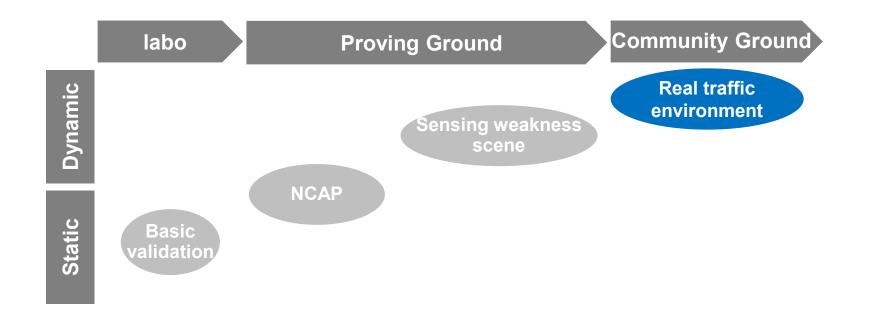
#### Validation of Disability in PG




We conducted a factor study of modeling based on the NIED\* rainfall test, and we were able to measure the phenomenon and the factors of malfunction peculiar to rainfall

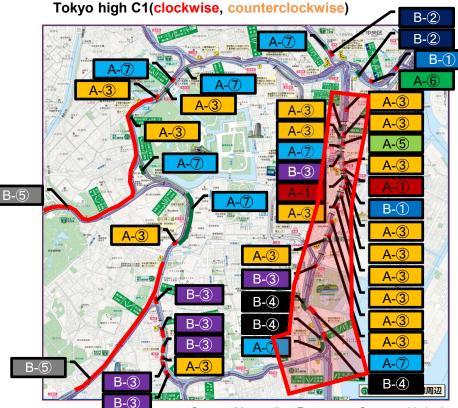
#### LiDAR weakness condition

LiDAR (Doubts due to rain)


#### 

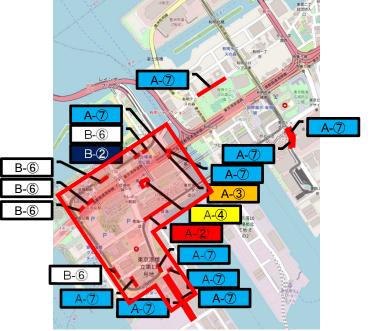
LiDAR (Reflecting like a mirror)




 \* : National Research Institute for Earth Science and Disaster Resilience Source : Kanagawa Institute of technology, SOKEN, INC DIVP<sup>®</sup> Consortium

## Virtual-PG / CG




# Virtual-CG will be constructed by identifying factors such as Tokyo metro highway C1 and Odaiba White Line based on the interview run

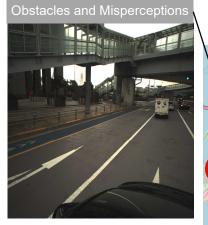
#### Modeling based on interviews with Odaiba in Tokyo high C1



Source : Metropolitan Expressway Company Limited

| No.         | Cog                | Difficulty Level         |           |
|-------------|--------------------|--------------------------|-----------|
| <b>A-</b> ① | False-<br>Negative | Shadow of noise barrier  | Easy      |
| A-2         |                    | Shadow of roadside trees | Difficult |
| <b>A-</b> 3 |                    | Reflection               | Normal    |
| <b>A-</b> ④ |                    | Road pattern             | Normal    |
| <b>A-</b> 5 |                    | Wide white line          | Easy      |
| <b>A-</b> 6 |                    | Road obstacles           | Difficult |
| <b>A-</b> ⑦ |                    | Blurred                  | Difficult |
| В-①         | False-<br>Positive | Shadow of noise barrier  | Easy      |
| B-②         |                    | Shadow of viaduct        | Easy      |
| В-3         |                    | Sunlight                 | Normal    |
| В-④         |                    | Road pattern             | Normal    |
| B-5         |                    | curb                     | Easy      |
| B-@         |                    | Road obstacles           | (Easy)    |




Odaiba

<sup>©</sup> OpenStreetMap contributors

Scheduled to confirm whether or not to use public roads (Odaiba, Metropolitan High C1) to obtain appropriate results in locations where the sensor is perceived as severe

#### Validation on public roads

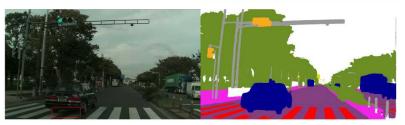
Experiment schedule on public roads







Special pavement








Camera image recognition at Kanazawa University and Chubu University (Semantic Segmentation)





blic roads Cooperation with Kanazawa University and Chubu University



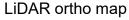
Automatic driving vehicle at Kanazawa University

Source: Kanazawa University, SIP Phase 2 Automatic Operation (Extension of Systems and Services) Measurement data "Research on Recognition Technologies Necessary for Automatic Operation Technologies (Levels 3 and 4)"

DIVP<sup>®</sup> Consortium

# To the feedback of sensing weakness in the automatic operation demonstration project to the Virtual-CG and the results of cooperation within the SIP research project

#### Pioneer


Collaboration with "Research on Recognition Technologies Necessary for Automatic Operation Technologies (Levels 3 and 4)"

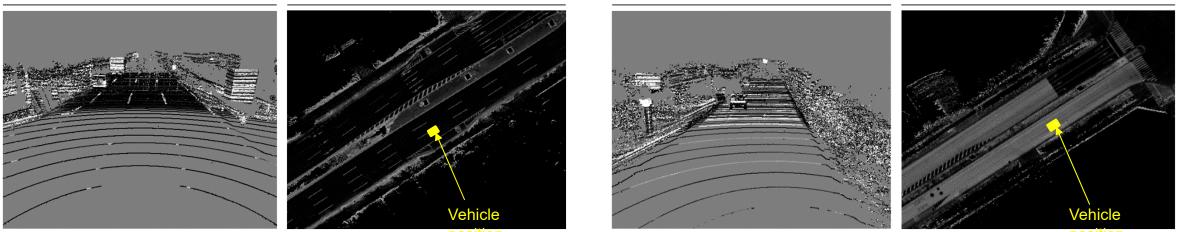
Normal asphalt (near Big Sight)

Due to the difference in reflectivity between asphalt and white lines, white lines can be detected.



LiDAR point group




Thermal shielding paint (in front of telecom center)

The reflectivity of asphalt and white lines is equal and white lines are difficult to detect.



LiDAR point group

LiDAR ortho map



Source : Kanazawa University, SIP Phase 2 Automatic Operation (Extension of Systems and Services) Measurement data "Research on Recognition Technologies Necessary for Automatic Operation Technologies (Levels 3 and 4)"

DIVP<sup>®</sup> Consortium

# Measurement basis Tokyo metro highway & Odaiba area virtualization as Virtual-CG, for able to validate sensing weakness due by precise duplication

#### **Virtual-CG construction**





Odaiba Ome area

Odaiba Telecom center

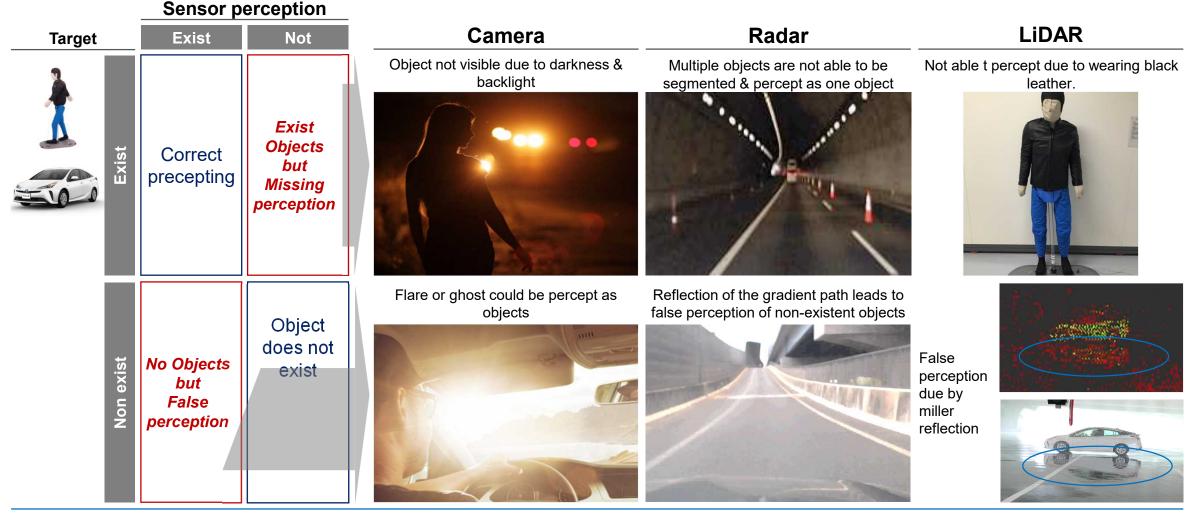
Odaiba Odaiba chuo



Source : MITSUBISHI PRECISION CO.,LTD. DIVP® Consortium

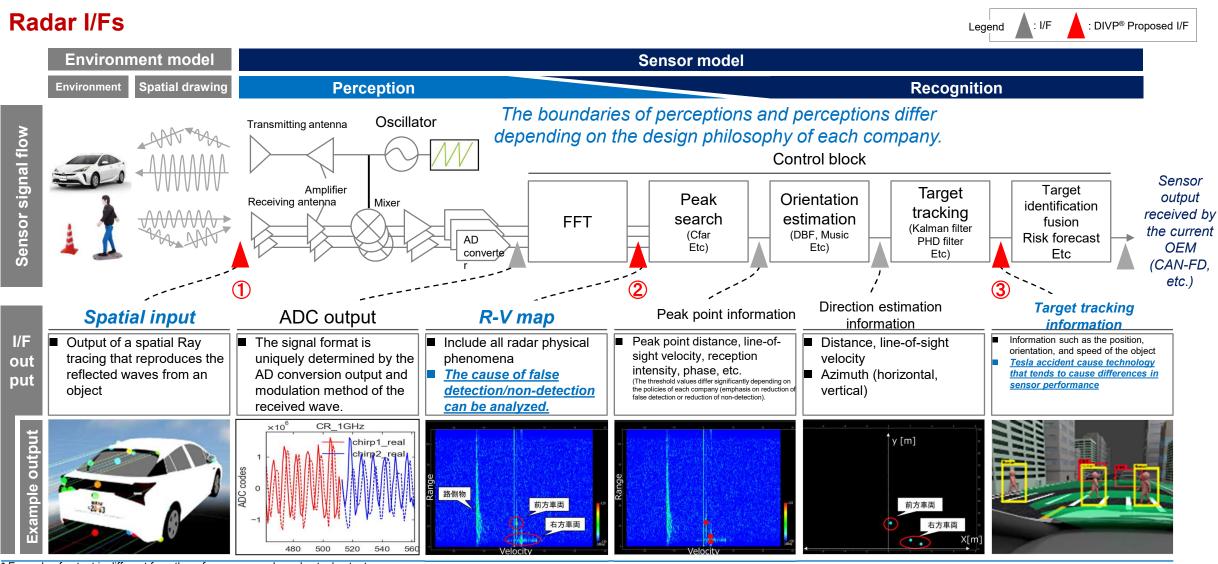
## For the sensing weakness validation in Real situation construction Odaiba Community Ground and contribute to AD safety assurance

#### **Odaiba Virtual Community Ground**


A 三菱スレシジョン株式会社 MITSUBISHI PRECISION CO., LTD.



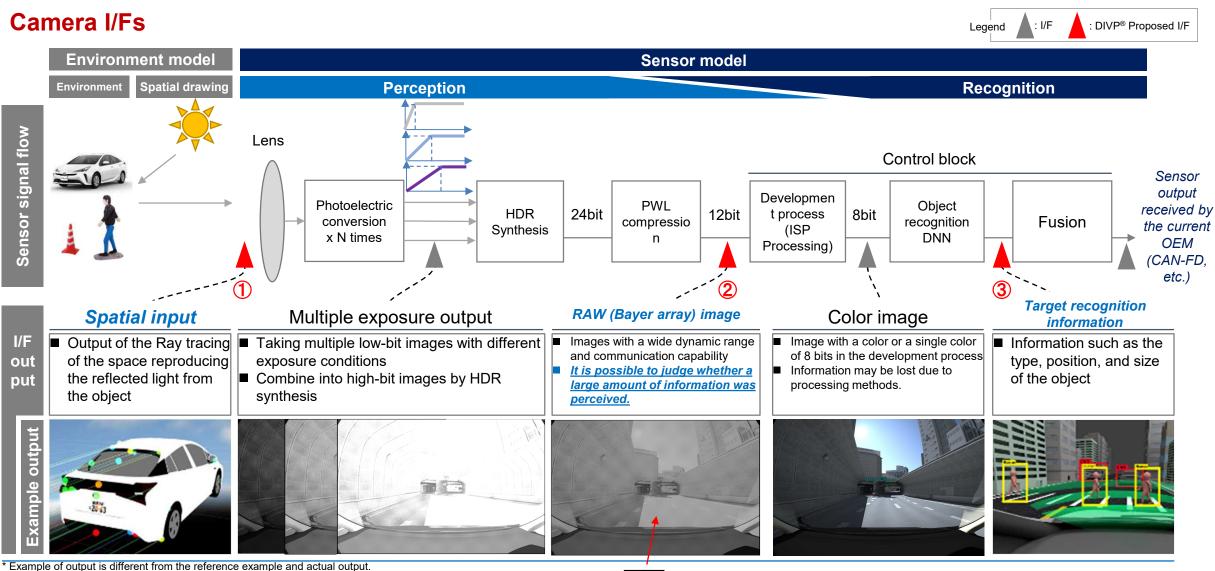
## **User review**


#### "Correctly precepting or not" is the Key to secure AD safety assurance liability

#### **Perception validation cases**



Source : MITSUBISHI PRECISION CO., LTD., SOKEN,INC, Pioneer Smart Sensing Innovations Corporation DIVP® Consortium


Standard I/F definitions are required because there are multiple I/Fs depending on internal control blocks in the sensor model. DIVP<sup>®</sup> proposes three I/F sections for safety validation

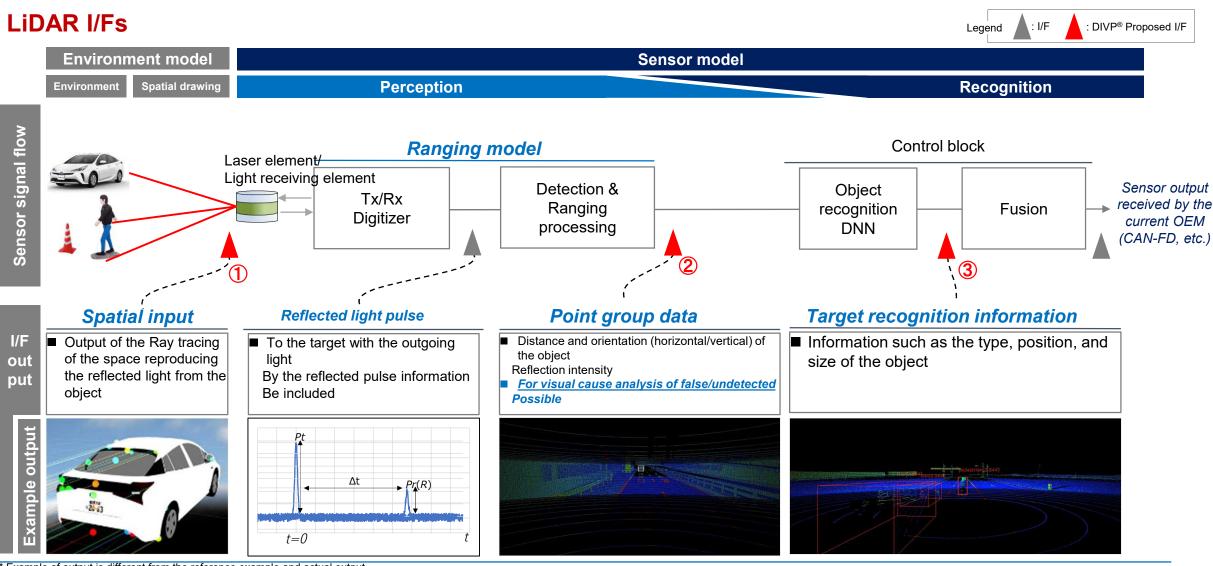


\* Example of output is different from the reference example and actual output. Source : SOKEN,INC

DIVP<sup>®</sup> Consortium

Standard I/F definitions are required because there are multiple I/Fs depending on internal control blocks in the sensor model. DIVP<sup>®</sup> proposes three I/F sections for safety validation



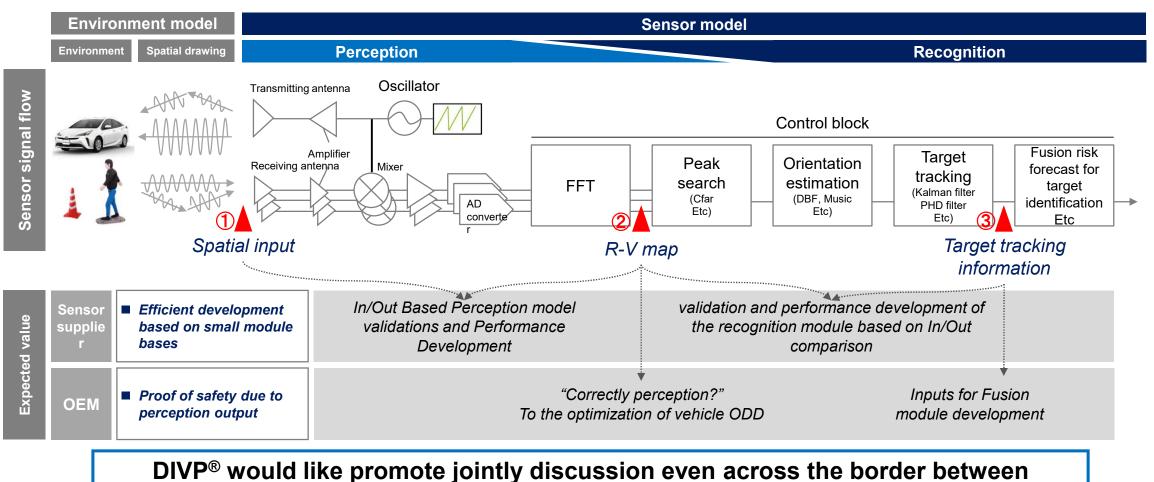

Source : SOKEN, INC DIVP<sup>®</sup> Consortium

Color filter array

(Bayer array)

FY2020 Year-end report 143

Standard I/F definitions are required because there are multiple I/Fs depending on internal control blocks in the sensor model. DIVP<sup>®</sup> proposes three I/F sections for safety validation

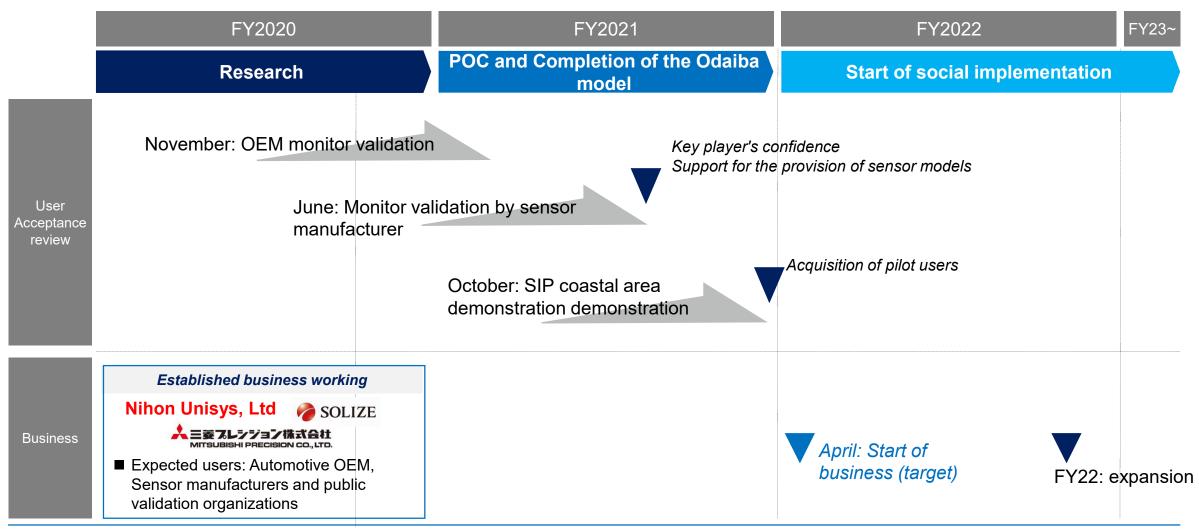



\* Example of output is different from the reference example and actual output. Source : SOKEN,INC

DIVP<sup>®</sup> Consortium

## DIVP<sup>®</sup> will jointly study with OEM (JAMA) and sensor suppliers to standardize 3-I/F node positions & metrics for AD-safety validation

### Advantage from Industrial stakeholders perspective




stakeholders, with using Simulation as a common language

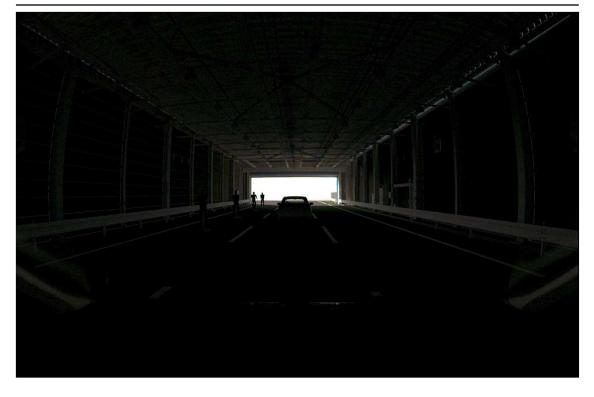
Source : SOKEN,INC DIVP<sup>®</sup> Consortium

## DIVP<sup>®</sup> will conduct the user acceptance review with OEMs & Sensor suppliers on FY21, and targeting to launch the Trial version on FY22 April as a Start of Business

#### Social implementation schedule



## **User review**


Consortium members

OEMs

Precise Environment & Space design model can validate the advantage of HDR Camera performance vs normal mode Camera

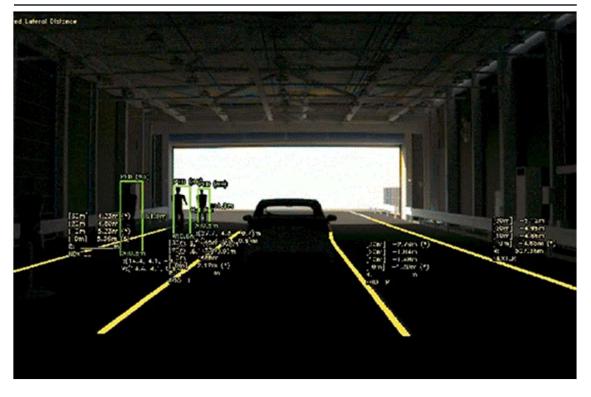
### **Example of Camera performance validation**

Abled to simulated HDR Camera can percept objects even in really dark condition



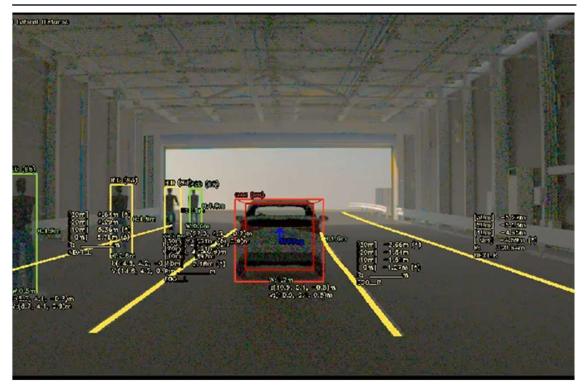
#### Normal (NML) Camera

## High Dynamic Range (HDR) Camera




Precise Environment & Space design model can validate the advantage of HDR Camera performance vs normal mode Camera

### **Example of Camera performance validation**


HITACHI Inspire the Next

Abled to simulated HDR Camera can recognize objects even in really dark condition



### Normal (NML) mode

## High Dynamic Range (HDR) mode

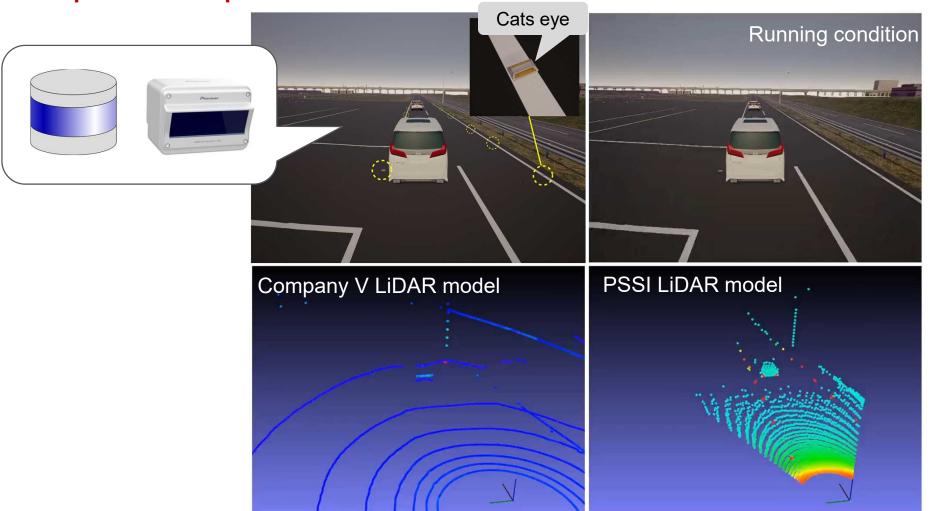


Source : Sony Semiconductor Solutions Corporation, Hitachi automotive systems  $\mathsf{DIVP}^{\circledast}$  Consortium

## **DIVP®** simulation able to validate Rader resolution level

### Example of Radar performance validation

Low resolution






**High resolution** 



# DIVP<sup>®</sup> simulation able to duplicate high-density point cloud in closer range as PSSI LiDAR advantage



#### Example of LiDAR performance validation

\*Pioneer SSI (PSSI): Pioneer Smart Sensing Innovations Corporation Source : Pioneer Smart Sensing Innovations Corporation DIVP<sup>®</sup> Consortium Pioneer

## Sensor supplier understand the value of Consistency & I/Fs could able to support their business, and expect the expansion of virtual-PG/CG for sensor validation

### Self-validation of DIVP<sup>®</sup> Performance by each company

|                                                              | Sony Semiconductor<br>Solutions Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                 | DENSO                                                                                                                                                                                                                | Pioneer                                                                                                                                                                                                                                           | HITACHI<br>Inspire the Next                                                                                                                                                           |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output<br>value                                              | <ul> <li>Building of the environment for<br/>evaluating compatibility between in-<br/>house image sensor models and<br/>actual cameras</li> <li>Camera perception model interface<br/>proposal for ASAM</li> <li>By cooperating with the<br/>environmental model part which<br/>reproduces the precise driving<br/>environment, we were able to<br/>reproduce the consistency between<br/>the in-house image sensor model<br/>and the camera with high accuracy.</li> </ul> | By standardizing the interface,<br>simulators and models can be<br>exchanged, and verification under<br>various conditions becomes<br>possible.                                                                      | <ul> <li>A simulator that verifies<br/>compatibility with the actual<br/>machine.</li> <li>Design that allows replacement of<br/>the LiDAR model by IF<br/>standardization</li> </ul>                                                             | <ul> <li>Standardization of input/output<br/>interface facilitates the introduction<br/>of sensor models by each company.</li> <li>Consistency with the real world</li> </ul>         |
| DIVP <sup>®</sup><br>potential for<br>supporting<br>business | It is effective in the occasion that<br>the consistency of the model of<br>developed sensors with actual<br>ones are demonstrated.                                                                                                                                                                                                                                                                                                                                          | In millimeter-wave radar product<br>development, it is possible to<br>discover potential defects and<br>check trends due to parameter<br>changes, which is expected to<br>improve product development<br>efficiency. | <ul> <li>Tool for sensor development</li> <li>Learning data generation tool for<br/>development of the recognition SW</li> <li>True value data generation tool for<br/>recognition SW validation</li> <li>Sensor promotion tool to OEM</li> </ul> | <ul> <li>Alternative to vehicle testing by realizing hazardous and difficult-to-reproduce tests.</li> <li>An OEM operation assurance tool based on real-world consistency.</li> </ul> |
| Next step<br>&<br>Further<br>Expectations                    | <ul> <li>Dealing with IR (near-infrared)<br/>bands</li> <li>Verification of noise levels</li> <li>Support for high-speed phenomena<br/>(bra, rolling shutter, flicker)</li> </ul>                                                                                                                                                                                                                                                                                           | To construct a simulation that can<br>accommodate a variety of<br>environments                                                                                                                                       | <ul> <li>Expansion of sensing weakness<br/>conditions</li> <li>Determination of LiDAR Perception<br/>Model Consistency Level from Object<br/>Recognition Perception and<br/>Improvement of Consistency toward it</li> </ul>                       | <ul> <li>Expansion of assets, including causes of malfunctions.</li> <li>Early commercialization.</li> </ul>                                                                          |

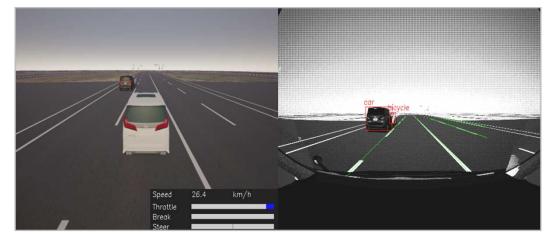
# In actual vehicle experiments, personnel and time costs are very high. DIVP<sup>®</sup> ensures high consistency and allows repeated data acquisition with few resources.

### **Comparison of resources in EURO-NCAP AEB control experiments**

**Real test conduction** 

Personnel × Time = 396h

|                                 | Personnel       | Time           |
|---------------------------------|-----------------|----------------|
| Pre-operation check             | * * * * *       | 24h            |
| Vehicle transportation          | <b>•</b> •      | 24h            |
| Preparation for experiment      | * * * * *       | 9h             |
| Experiment                      | * * * * * * * * | 24h (8h×3days) |
| Cleaning up after<br>experiment | * * * * *       | 3h             |




\*Calculated based on data from NCAP AEB control experiment conducted in December 23~25, 2020 Source : SOKEN, Inc. Ritsumeikan University

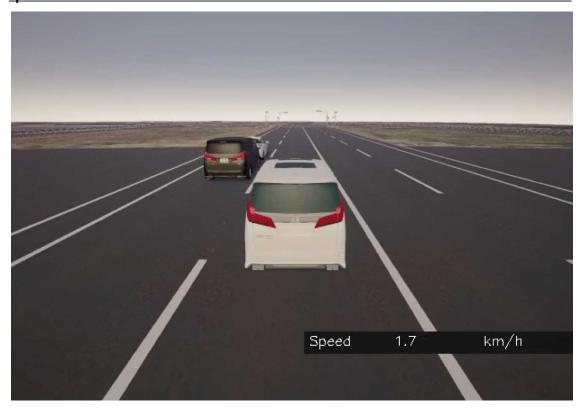
|                      | Personnel | Time |
|----------------------|-----------|------|
| Scenario development | •         | 3h   |
| Experiment           | ŧ         | 12h  |

XNo need to monitor during calculation

**DIVP®** Simulation



SOKEN R RITSUMEIKAN


Personnel × Time = 15h

## DIVP<sup>®</sup> with standard, sensor-evaluable I/F allows for verification of sensor fusion. A platform capable of evaluating even fusion models and vehicle control methods.

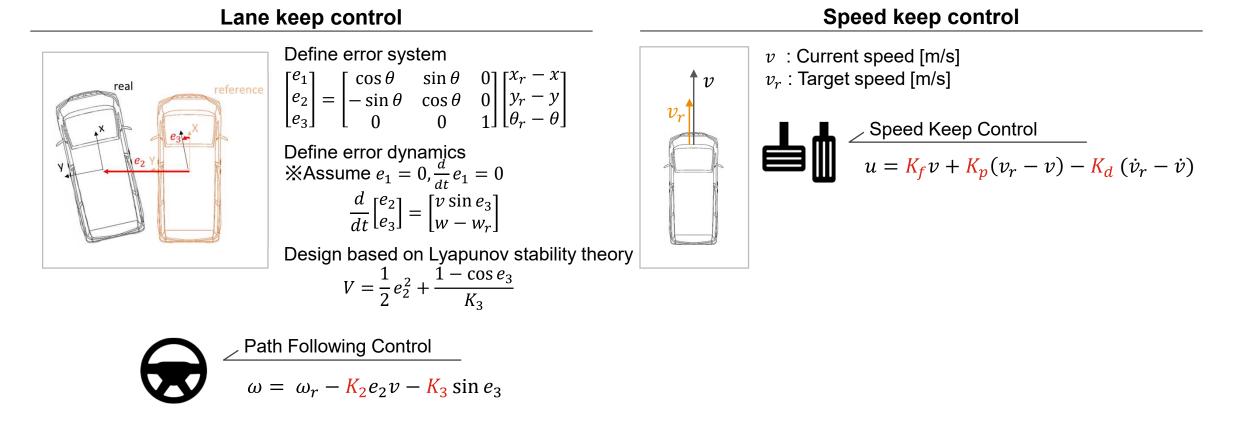
### AEB malfunction due to incorrect detection of fusion model and its improvement



AEB malfunctions in response to black alfade on adjacent lane. Due to the position error of the millimeter-wave recognition model, it was judged that black alpha was present in the lane.



Improved fusion method to correct AEB malfunction. In addition, considering the actual amount of input delay, the AEB is designed so that it will not operate until the timing when a person cannot step in time.




Source : Ritsumeikan University DIVP<sup>®</sup> Consortium

# DIVP<sup>®</sup> is a platform that can also develop sensor fusion models and control laws because it is a simulator that can evaluate each sensor and has a standard I/F.

### Implementation of control laws for lane-keeping and speed-keeping

R RITSUMEIKAN



Making steady tuning of the parameters is necessary to achieve control with high accuracy.

Source : Ritsumeikan University DIVP<sup>®</sup> Consortium

#### FY2020 Year-end report 155

DIVP<sup>®</sup> reproduces the actual environment with high consistency, allowing the controller and sensor fusion design in practical conditions. It may contribute to minimizing the parameters tuning using actual vehicles.

#### Demonstration of the lane keep control on the C1 Metropolitan Expressway

Lateral error

RITSUMEIKAN



Travel with accuracy within 25 cm of lateral error and within 4 ° of heading error with respect to the center of the own lane

Source : Ritsumeikan University DIVP<sup>®</sup> Consortium 180

190

200

-10

150

160

170

time[s]

## **User review**

Consortium members



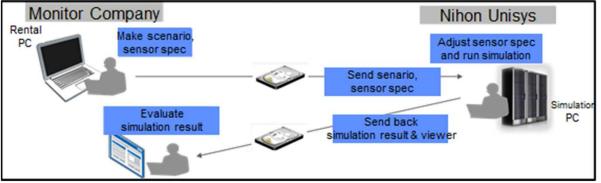
## OEM Monitor Validation was conducted to confirm the usefulness of the "environmentpropagation-sensor model" output data with improved consistency

#### **Implementation Overview**

Nihon Unisys, Ltd

#### Purpose

Monitoring companies were invited to participate in the domestic OEM, and a monitoring validation was conducted to verify the effectiveness of the prototype version of the DIVP<sup>®</sup> simulator research product. The purpose of the project is to confirm the usefulness of the output data of the "environment, propagation, and sensor model" with improved consistency, and to provide feedback for future improvement of the simulation model. The project will be a stepping stone to commercialization.


#### ■ For applications

NEDO-HP recruited from October 9 to October 18 for "Monitoring and Verification of Effectiveness in the Simulation of Automatic Operation Performance of Output Data of 'Traffic Environment-Radio Propagation-Sensor Model' on the Second Phase of the Strategic Innovation Creation Program (SIP)/Development of Automatic Operation Environment Method in Virtual Space."

Applications were received from 3-OEMs : Toyota Motor, Honda Motor, and Mazda Motor.

# Since it is difficult to execute the simulation freely in a remote environment, a scenario is created by lending PC to each OEM and the sim was executed in Unisys,Ltd after sending

#### **OEM Monitor Validation Implementation Overview**



#### Nihon Unisys, Ltd

Prepare confidentiality agreements between each OEM and Japan Unisys (commissioned by NEDO). 9 DIVP<sup>®</sup> Consortiums prepared a written pledge to comply with the above agreement to OEM.

• In the future, the simulation system is expected to be operated in the cloud environment.

However, because the system infrastructure has not been established this time, simulation scenarios are prepared on the PC (dedicated environment) on which the monitoring company has been lent.

Scenarios created were received by Japan Unisys (commissioned by NEDO) and simulated in the simulation calculation environment prepared. The results are returned to the monitoring company for confirmation.

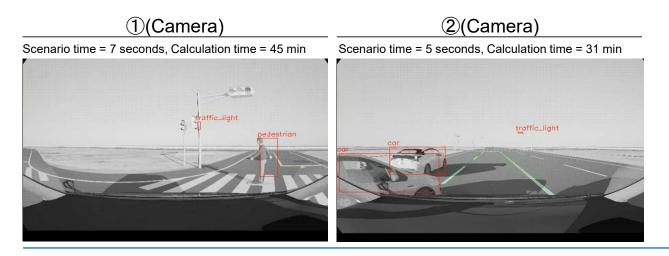
<Schedule/Results>

|          | Aug     | Sep | Oct | Nov | Dec                                          | Jan                                  |     |
|----------|---------|-----|-----|-----|----------------------------------------------|--------------------------------------|-----|
| Schedule | KickOff | ,   |     |     | st and<br>Ilation<br>Evaluation<br>Summarize | Summarize ALL                        |     |
| MAZDA    |         |     |     |     | Evaluat                                      | e SDMG Simulation<br>Evaluate Result | Sum |
| HONDA    |         |     |     |     | Evaluate SDMG<br>Simulation Evalu            | ate Result                           | ,   |
| τογοτα   |         |     |     |     | -                                            | MG<br>nulation<br>uate Result        |     |

## DIVP<sup>®</sup> has concretely grasped the expectations of each OEM as represented by the consistency. However, this time, the validation pattern remains rudimentary

#### Assessment summary for each OEM

| Requeste<br>d<br>simulation<br>scenario               | <ul> <li>(ADAS) 3 scenarios to be assumed to occur actually         <ol> <li>Right-handed pedestrian</li> <li>Comparison of perceptions and perceptions of low and high beams in the standard scenario</li> </ol> </li> <li>(AD)5 scenarios to evaluate attenuation of LiDAR         <ol> <li>Standard (2) light rain (3) heavy rain</li> <li>Pedestrian black leather clothing</li> <li>Surface of the heat shielding paint</li> </ol> </li> <li>Comparison of perceptions and perceptions of various parameter changes in the DIVP® standard scenario</li> </ul>                       | It have become clear that<br>each OEM expects for<br>ensuring consistency in<br>simulations, expanding the<br>scope of application based<br>on the assumption of<br>business use, and improving |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation                                            | <ul> <li>Camera and LiDAR have no sensation or tendency (difficult to make formal judgment).</li> <li>Improvement is required for SDMGenerators and Viewers who are supposed to use the services.</li> <li>Differences between low and high beams could not be evaluated</li> <li>Lens distortion for camera and LiDAR No reproducibility from a sensory point of view, such as reproducibility.</li> <li>Radar: Some parts do not match sensations</li> <li>Qualitative consistency is confirmed. (Comparison with real phenomena is not yet)</li> <li>Visualization is good</li> </ul> | <ul> <li>the operability of various applications.</li> <li>In particular, OEM is still searching for specific usage scenarios and possible unlidetion methods.</li> </ul>                       |
| Remaining<br>issues<br>Expectations<br>for the future | <ul> <li>Ensurance of consistency</li> <li>Enriching assets</li> <li>Support various phenomena</li> <li>Practical use of I/F of intermediate output</li> <li>High-speed simulation</li> <li>Improvement of SDMG and Viewer</li> </ul>                                                                                                                                                                                                                                                                                                                                                    | validation methods. Lead as DIVP <sup>®</sup> is required to establish this.                                                                                                                    |


# In the valuation of accident scenario, we have got good reviews about camera and LiDAR. Verification of consistency and improvement for software usability are required.

### Valuation pattern 1

#### Nihon Unisys, Ltd

#### Valuation scenario

| # | Overview                                                                                                          | Conditions     |
|---|-------------------------------------------------------------------------------------------------------------------|----------------|
| 1 | <ul> <li>Right-turn walk<br/>(Pedestrian pedestrian on the crosswalk ahead of the<br/>right-hand turn)</li> </ul> | Fine at 3 p.m. |
| 2 | Parking departure<br>(Sudden departure and convergence of vehicles from a<br>tandem parking line)                 | As above       |
| 3 | <ul> <li>Pedestrian group<br/>(Pedestrian Groups on Forward Crossing Trails)</li> </ul>                           | As above       |



#### Validation results

#### OEM comments

- Camera, LiDAR is sensory OK. (however, it is difficult to make a formal decision in situations where here are no data on consistency).
- It would be good to be able to perform multi-object testing at low cost.
- You want to create the vehicle trajectory by using other object standards (for example, at the center of the lane, at the same distance as other vehicles).

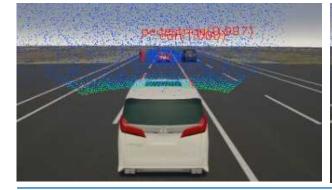
#### Summary

- Although the camera and LiDAR were evaluated as sensory acceptable, it is necessary to show the grounds for consistency.
- Radar cannot be evaluated by OEM alone and should be performed with the involvement of the sensor manufacturer.
- We have received many requests for SDMGenerator and Viewer for business use, and we would like to reflect them in the DIVP<sup>®</sup> Development Plan.

Source : Nihon Unisys, Ltd DIVP<sup>®</sup> Consortium

# In the valuation of standard scenario with various parameters, we have got good reviews about tendency of LiDAR attenuation. Enriching assets and various phenomena is required.

### Valuation pattern 2


#### Nihon Unisys, Ltd

#### Valuation scenario

| # | Overview                                                                            | Conditions                       |
|---|-------------------------------------------------------------------------------------|----------------------------------|
| 1 | ■ The Basics                                                                        | Cloud/12:00                      |
| 2 | Signal attenuation due to rain and fog                                              | 20 mm/h/12 o'clock in small rain |
| 3 | As above                                                                            | Heavy rainfall 40mm/h/12:00      |
| 4 | Malaise caused by black leather clothing                                            | Cloud/12:00                      |
| 5 | Impaired white line perception on the road<br>surface of the heat shielding coating | As above                         |

#### 2LiDAR

Scenario time = 10 seconds, Calculation time = 62 min





Scenario time = 10 seconds, Calculation time = 61 min



#### Validation results

#### OEM comments

- SDM Generator is intuitive and easy to use
- The simulation results reproduced the trend of the attenuation of LiDAR due to rain.

#### Summary

- There is a need for more assets (NCAP children, soundproof walls, motorcycles, etc.)
- There is a need for enhanced response to LiDAR malfunctioning scenes (backlights, splashes, fog, and Lidar (the same wavelength beam) on opposite vehicles)

Source : Nihon Unisys, Ltd DIVP<sup>®</sup> Consortium

## Though most of requested valuation scenario were not executed in DIVP<sup>®</sup>, we have got good reviews about accuracy of camera & LiDAR.We must implement various condition & scenario

(2)(Camera, Recognition Off)

### Valuation pattern 3

(1)(Camera, Recognition Off)

#### Nihon Unisys, Ltd

#### Valuation scenario

| # | Overview                                   | Conditions          |
|---|--------------------------------------------|---------------------|
| 1 | Vehicle and people in front of the vehicle | Sun/17:00/low beam  |
| 2 | ■ As above                                 | Sun/17:00/High Beam |

## Validation results

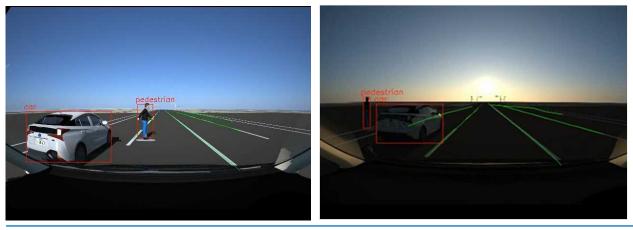
#### OEM comments

- Differences between low and high beams cannot be evaluated (not reflecting the light distribution characteristics of the headlights).
- The SDMGenerator screen is simple and sensitive.
- Camera: I felt that the lens distortion was beautifully reproduced and (to the extent not compared to actual data) well reproduced.
- Radar: I can't say anything when compared with actual data, but I don't feel like I am output.
- LiDAR is well shaped. I think it would be even better to reproduce the vehicle by adding the slope of the road surface.

#### Summary

- Many requests were received (recreation of unevenness on the road surface and vibration of the vehicle body, enhancement of assets, weather conditions such as rain, snow and fog, white line cassette, etc.)
- Concordance was not mentioned. In addition, the perception was not evaluated in detail and was not evaluated qualitatively.
- Most of the desired patterns could not be realized, including the low/high beam comparisons that were implemented, and the expectations were not adequately met.

# Scenario time = 5.6 seconds, Calculation time = 52 min Scenario time = 5.6 seconds, Calculation time = 52 min Scenario time = 5.6 seconds, Calculation time = 52 min


Source : Nihon Unisys, Ltd DIVP<sup>®</sup> Consortium

## Perception and recognition performance are evaluated in the standard scenario with various parameters. We have got good reviews about sensor output tendency.

### Valuation pattern 4

#### Valuation scenario

| # | Overview                                              | Conditions          |
|---|-------------------------------------------------------|---------------------|
| 1 | NCAP pedestrian crossing<br>(Stopped vehicle = black) | Fine/0:00/high beam |
| 2 | Same as above (Stopped vehicle = white)               | Fine at 12 o'clock  |
| 3 | Millimeter-wave malfunction                           | Fine at 12 o'clock  |
| 4 | Camera/LiDAR weakness                                 | Fine/0:00           |
| 5 | ■ As above                                            | On sunset/dawn      |
|   | 2)(Camera)                                            | ⑤(Camera)           |



#### Validation results

#### OEM comments

- Camera, Radar, LiDAR shows good tendency. In particular, camera overflow by the sunlight is good.
- Validation with real phenomena is required. We should evaluate consistency of DIVP<sup>®</sup> and judge the application of DIVP<sup>®</sup> for the simulation of serious scenario.
- The usability of SDMGenerator is good.

#### Summary

- We have got good reviews about every sensor simulation tendency, but we should show the evidence of the consistency.
- The importance of intermediate interface output and the usage of it are agreed.
- Implementation of the simulation in various scene is required.

Source : Nihon Unisys, Ltd DIVP<sup>®</sup> Consortium

Nihon Unisys, Ltd

## **International Cooperation and promotions**

## DIVP<sup>®</sup> and VIVALDI(German consortium) launched joint project named VIVID from Nov-2020, Targeting to simulation-based AD safety assurance

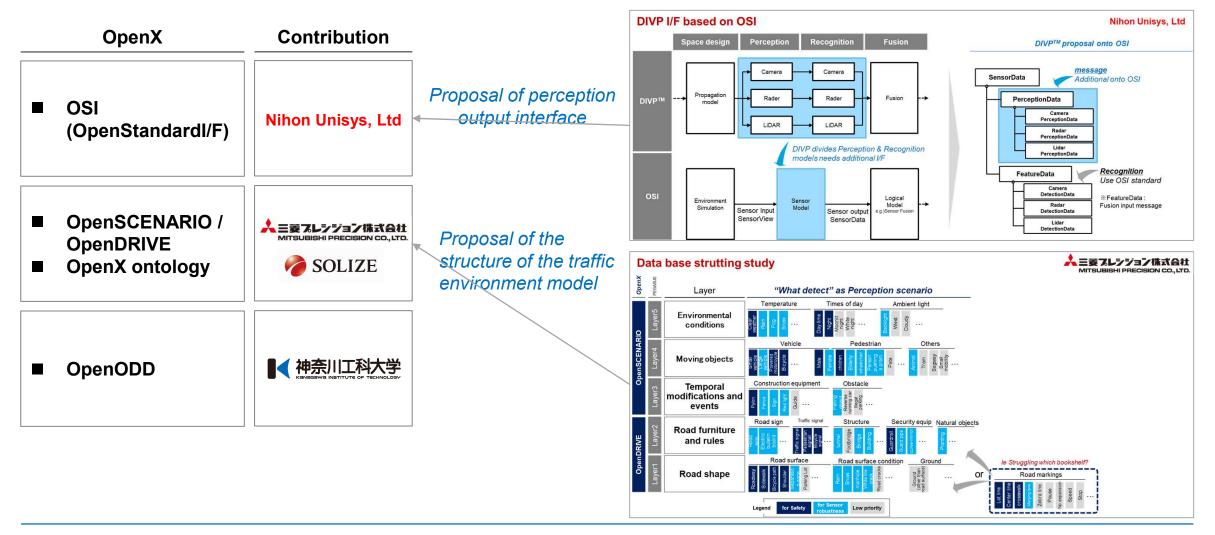
### **VIVID** project

#### Key objectives

- Simulation and test chains: Fidelity metrics
- Complementary methods from simple to realistic: SiL, HiL, ViL, FoT
- Multi-sensor platforms: Radar, lidar, camera
- Open interfaces: Scenario generation, sensor and environmental models, co-simulation
- Building a reference architecture => creating a knowledge base

#### Jointly study toward,,

How safe is safe enough?


How realistic is realistic enough?



Source : VIVALDI presentation DIVP<sup>®</sup> Consortium

## DIVP<sup>®</sup> key members have contributed to ASAM OpenX activity for I/Fs, Environmental assets structing, ontology technology etc. standardization

## Standardization thru ASAM OpenX activity



## Accelerating promotion for expanding user awareness of DIVP<sup>®</sup> simulation

#### **Promotion**

| Date<br>2020.10.20 | Presentation media                                                                                                                                                                                           | Presentation titles                                                                                                                                                                                                                                                                                     | Presenter<br>Hideo Inoue | Filing<br>date       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|
| 2020.10.20         | SIP-adus Workshop 2020                                                                                                                                                                                       | Driving Intelligence<br>Validation Platform                                                                                                                                                                                                                                                             | Hideo Inoue              | Preparing for        |
| 2020.11.13         | Workshop for virtual<br>simulation on VIVID                                                                                                                                                                  | Presentation                                                                                                                                                                                                                                                                                            | Hideo Inoue              | filing               |
| <br>2020.11.25     | MotorFan illustrated<br>Volume 171, (2021.1.28<br>published)                                                                                                                                                 | Interview: The theory of evolution of cars<br>that do not collide<br>(article)Future sensor simulation system in<br>autonomous driving, p074-077, Is the<br>ADAS / AD technology working properly?<br>Establishment of quantitative validation<br>method for vehicles and its significance,<br>p078-081 | Hideo Inoue              | Preparing for filing |
| 2020.11.25         | VIVID expert workshop, 4th<br>Bilateral expert workshop on<br>connected and automated<br>driving Virtual meeting,<br>German-Japan joint virtual<br>validation methodology for<br>intelligent driving systems | –VIVID Virtual validation –Technological progress                                                                                                                                                                                                                                                       | Hideo Inoue              |                      |
| 2020.12.10         | 8th Automotive Functional<br>Safety Conference                                                                                                                                                               | Presentation : SIP Phase2 AD:<br>Development of AD validation environment<br>improvement method in virtual space                                                                                                                                                                                        | Hideo Inoue              |                      |
| 2021.02.17         | 6th Automotive Software<br>Frontier 2021                                                                                                                                                                     | Presentation : SIP Phase2 AD:<br>Development of AD validation environment<br>improvement method in virtual space                                                                                                                                                                                        | Koji Nagase              |                      |
| 2021.03.23         | [Automotive Technology<br>Association] 14th Automobile<br>Control and Model Division<br>Committee                                                                                                            | Presentation : SIP Phase2 AD:<br>Development of AD validation environment<br>improvement method in virtual space ;<br>About DIVP <sup>®</sup> Proj                                                                                                                                                      | Hideo Inoue              |                      |

#### IPs

| Filing<br>date          | Accession<br>Number | Title of the patent, etc. in the application                                 | Applicant                                                        |
|-------------------------|---------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|
| Preparing for<br>filing | -                   | Driving simulator for validation of<br>on-board cameras                      | Mitsubishi Precision<br>Corporation<br>School, Geotoku<br>Gakuen |
| Preparing for filing    | -                   | (Hypothetical) Camera Perception<br>Model Consistency Verification<br>Method | Sony Semiconductor<br>Solutions Corporation                      |
|                         |                     |                                                                              |                                                                  |
|                         |                     |                                                                              |                                                                  |
|                         |                     |                                                                              |                                                                  |

### **Reported outcome to SIP committee members**

#### **Oct-20<sup>th</sup> SIP committee member visit**

#### Outline

<u>Date and Time</u>: Tuesday, October 20, 2020 <u>Place</u>: Kanagawa Institute of Technology - Advanced Technology Research Institute

Participants: (General) Mr. Sudo,

(Commissioner) Mr. Kozuhata, Mr. Okazaki, Mr. Shirai, Mr. Fujino, Mr. Kaminoyama, Mr. Kajiwara, Mr. Igarashi, Mr. Kimishima, Mr. Takenaka, Mr. Hayashi and others

<u>Outline</u>: Visited the research base to deepen the understanding of experts and members of the validation WG.

- Excerpts from comments from committee members
- ✓ As a second phase of SIP, the introduction of simulation technology for safety validation seems to be SIP, and we expect that it will be possible to develop uniquely in Japan.
- ✓ I would like to see the development that considers risks come to the fore and promote the building of consensus among the people toward the realization of AD.
- As a benchmark, please check what the United States and Germany are aiming for to promote self-driving, and make sure that the direction is correct.



## END



## Tokyo Odaiba FOT area $\rightarrow$ Virtual Community Ground

