FY 2018 Report

Strategic Innovation Program (SIP) 2nd period Autonomous driving (the scalability of systems and services) Approach development for improving an autonomous driving validation environment in virtual space

<Project member>

Kanagawa Institute of Te	echnology (Representative)
Ritsumeikan university	Denso Corporation
OTSL Inc.	Hitachi Automotive Systems, Ltd.
Mitsubishi Precision Company, Limited	PIONEER CORPORATION
Nihon Unisys, Ltd.	SOKEN, INC.
	SOLIZE Engineering Corporation

March 29, 2019

Table of contents

Project overview	3
FY 2018 outcome	13
Project summary	14
(1) Virtual Validation platform research	17
(2) Models requirements & Interface research	27
(3) Measurement design research	57

Project overview

Driving Intelligence Validation Platform (DIVP) is able to validate Sensor malfunction caused Performance limit, with standardized Interface

Project perspective

Validation platform concept

OEMs

Source: Mitsubishi Precision Company, Limited, SOKEN. INC. Hitachi Automotive Systems, Ltd.DENSO CORPORATION, PIONEER CORPORATION

Although Autonomous driving system increasing complexity with AD-level, Higher-level safety must be secured in all potential driving situation

Indicator of limit

Conventional system design limits

Current System design

Total System Design & Validation must screen & secure whole potential path of failure mode caused by Sensor malfunction as system

Define architecture & Interface in "Functional simulation", and then detail model implemented "Physical simulation" enables Sensor malfunctions

Strategy of DIVP

Connection between real-time "Functional simulation" & precise but slow "Physical simulation" is further research theme

The Project Target is verification & to define Validation Platform can Validate Performance limits due to Sensor malfunctions, etc.

Project Target & approach

	Target	Approach
Basic function	Validating intended autonomous driving performance in a virtual environment	Verify the consistency of Validation results between virtual and real environments
tage	Capable for validating performance limits in a virtual environment due to autonomous driving recognition failures	Research the connection the "Physical simulation" output into "Functional simulation"
Advan	 Able to check individual outputs in each Nodes after Sensor, after recognition, etc. Able to investigate Plug&play of each Block bases 	Define a standard Platform has standardized Interface in each Node

Outcome toward Target

Interface specification Document	 Interface specifications that could be standard for the autonomous driving Validation environment Build an environment consisting of the Functional simulation and the Physical simulation 	 Functional simulation Capable of simulating in typical scenes Similar Performance limit's maneuver vs real worl Capable of Plug&Play each component 				
		Physical simulation	 Highly correlated Sensor model, can contributes industry with Validation possibility of Sensor malfunction caused Performance limit One & only verified simulator vs real world Capable of Plug&Play each component 			

Target is "Physical simulation" to validate sensor malfunction, through Continuous growth from real time "Functional simulation"

Direction Simulation growth

Growth chart from Functional simulation to Physical simulation

Step by step Target

Using the Functional simulation and Physical simulation with same principle One-Architecture, consecutively increase the simulation accuracy with improving precise Models

Through the step by step approach, Realtime "Functional simulation" 1st and Highly correrated "Physical simulation" 2nd

Project plan

	First half of FY 2019 Second half of FY 2019		First half of FY 2020	Second half of FY 2020
Step	Examine behavior of combined modules	Step 1 Joint check Step 2 Functional simulation Verification	Step 3 Physical simulation Verification	Step 4 Potential Validation
Vitation environment Vitation environment Market Ma	<complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block>			
Validation details	 Implement the software of the function model based on defined Interface Operational Check as component level 	 Joint & check overall behavior of combined modules including a test data generating tool Validate simulations on the functional model 	 Implement the physics model based on measurements of actual Sensors Build a model of factors of recognition failures Validate consistency with actual measurements of a measuring car 	 Investigation for Linkage of Physics simulator to the Functional simulator Examine Validation possibilities in driving environments including a local road
Source: S	Simulation Interface for standardization GOKEN. INC, Mitsubishi Precision Company, Lin	Functional simulation: Joint check & Verification with intended functionality mited	Physical simulation: Joint check & Verification with Performance limits	Expand the scope of scenes

Based on Sensor malfunction and measurement possibilities in a real environment, planned Validation scenes in each step

Validation scenes (under study)

Step	Validation	Timing	Objective	Validation scenes	Malfunction conditions	Candidate real environment
1	Joint check	From Oct 2019	 Examine consistency in a stationary condition 	 Stationary objects and in a stationary condition 	■ N/A	JARI JTown
2	Functional simulation Validation	From Jan 2020	 Examine consistency in basic driving scenes 	 Large Vehicles run side by side, etc. NCAP (pedestrians and bicycle-riding persons) 	■ N/A	JARI JTown
3	Physical simulation Validation	From Apr 2020	 Examine consistency under the condition of recognition failures 	 Large Vehicles run side by side NCAP (pedestrians and bicycle-riding persons) 	Rain and fogBacklightNight	JARI JTown
4	Potential Validation	From Oct 2020	 Check Validation possibilities various scenes on a local road 	IntersectionLocal road in a suburb	Rain and fogBacklightNight & others	N/A

Large Vehicles run side by side

•Source: Mitsubishi Precision Company, Limited

Environmental factor (Backlight)

Environmental factors (Rain and Fog)

Designed research theme, Platform & Interface Design, each Model enhancement and Verification shared by 10-Experts

Responsibility assignment matrix

D2. Validation platform has standardized Interface

Total 10-experts(2-universities and 8-company) contributed as Consortium style progressing each research theme

Consortium formation

Pa	articipating organizations	Area of research		
	Kanagawa Instituto of Tochnology	В0	 Combine and validate Sensor simulation models 	
	Kanagawa msulule or rechnology	C2	Implement Risk prediction model	
R 立命館大学	Ritsumeikan University	C1	 Research the autonomous driving behavior model 	
		A1	Build environment models	
		D1	Research for Standardized Interface	
	SOKEN INC	A1	 Measure real world environmental data, 	
SOKEN	SOREN, INC.	B4	 Verification of Sensor model's performance 	
★三変スレンション様式会社 MTTOLINES+F PAECINICO, LTD.	Mitsubishi Precision Company, Limited	A2	 Develop a safety Validation test data generating tool 	
🍘 SOLIZE	SOLIZE Engineering Corporation	A2	 Research of Validation scenarios format, etc. 	
Hitachi Automotive Systems	Hitachi Automotive Systems, Ltd.	B1	Research Camera model	
DENSO	DENSO CORPORATION	B2	Research Millimeter-wave Radar model	
Pioneer	PIONEER CORPORATION	B3	Research LiDAR model	
	Nihon Unisys, Ltd.	D2	 Research of Validation platform 	

FY 2018 outcome

Project summary

(1) Virtual Validation platform research

(2) Models requirements & Interface research

(3) Measurement design research

FY 2018 outcome

Project summary

(1) Virtual Validation platform research

(2) Models requirements & Interface research

(3) Measurement design research

FY 2018 outcomes are Interface spec, Platform design, and measurement design for validity of simulation as an Architecture for Validation platform

Outcome during FY 2018

Based on FY2018 architecture design, modeling of each environmental, Sensor models and connect to check simulation operation check

Activities and expected outcome during FY 2019

D2. Nihon Unisys Validation platform has standardized Interface

FY 2018 outcome

Project summary

(1) Virtual Validation platform research

(2) Models requirements & Interface research

(3) Measurement design research

Researched Platform architecture for realize continuous growth of simulator from High-speed real time "Functional simulation" to high validity "Physical simulation"

Outcome during FY 2018

D2. Nihon Unisys Validation platform has standardized Interface

Made a direction to proceed Platform investigation using Carla+UE4 base, from current open source simulation research results

Carla vs AirSim comparison

Item	1 st Category	2 nd Category	3 rd Category	CARLA	AirSim	Memo
	PF	Unreal Engine 4	-	4.21	4.18	
		Unity	-	×	Experimental	
	00	Windows	-	Δ	0	
Development	03	Linux	-	0	0	
base	License	-	-	code:MIT License Asset:CC- BY License	MIT License	CC: creative commons license CC-BY: require Author print in case of copy, show demo, etc.
_		Scenario	-	0	×	
Environment model(PartA)		Weather	-	0	0	
	APIs		Camera	0	0	
Sensor model (PartB)		Detection (Sensor)	Rader	0.9.9	×	
			LiDAR(groun d truth)	0	0	
Autonomous		Judgement	-	0	×	
model (PartC)		Operation	-	0	×	
Out side	tside		-	0	0	
connectivity		Support Autoware	-	0	×	
Space model (PartD2)	Arithmetic processing	Ray cast	-	0	0	
		Vehicle	-	0	Δ	
Driving		Human	-	0	Δ	Asset of AirSim doesn't
environment model (PartA)	Asset	Road side objects	-	0	Δ	able to use on another tool scored Δ
(* === = =)		Мар	-	0	Δ	
Origin	Target	-	-	Autonomou s	Drone, Autonomous	

UE4 vs Unity comparison

Item	Unity	Unreal Engine 4	Memo
Language	C#, JavaScript	C++	
Blue print	-	0	
License strategy & fee	Personal: free Plus: \$25/month Pro: \$125/month	Free 5% royalty on over \$3,000 gross profit in quarterly basis	
Reference book (from amazon)	30,000 over	71	
Share	50%	25%	Unreal Engine4 share is growing
os	Windows, Mac, Linux	Windows, Mac, Linux	
Asset store	0	0	
CARLA	×	0	

Choose Carla as a investigation base

- Higher diversion of Model, Assets, Map, etc.
- Support for Scenario function, Autonomous model

Choose UE4 as a investigation baseEasy development-ability with Visual Scripting system

Utilize Carla+UE4, Interface standardization realizing Plug&Play of each models is 1st step, then improving simulation performance with Precise of each Models

Simulation Platform design

Making platform to solve those problems

	Maximus output with minimum resources
Requir ement s	Able to standardize Interface on each node for realizing Plug&Play of each models
	Able to Precise each models to realize higher correlation simulation

Utilize current open source simulation, and concentrate Project focus efficiently

- 1. Standardize Interface
- 2. Precise models based on Sensor Principles

Define <u>DIVP(Driving Intelligence Validation Platform)</u> Architecture with Components, standardized Interface

DIVP(Driving Intelligence Validation Platform) design

Improve simulation validity by upgrading Models in One-Architecture

And Higher correlated simulation with Precise models

Space design model with one architecture can achieve the both Functional & Physical simulation

Space design model study

	Simulation catogory	Space of					
	Simulation category	Camera	Rader		LiDAR		
Direction	Functional simulation	 Simple model can percept UE4 basic animation 	Model for non-multi path Ray tracing		Model does not us foot print	e Continues improvement using one platform	
	Physical simulation	Model for Path tracing	 Model for Multi path Ray tracing 		Model with foot pri	.t	
	Refection characteristics		Radio wave for each Sensor				
Space design model Principle	Source Retro reflect	• tion Specular	Sensor	Radio wave	Wave length	Characteristics for calculation	
	Input Reflect		Camera	Visible light	■ 380nm~ 770nm		
	90 ← Contraction	Refraction		Millimeter wave	■ 3mm~5mm	 Material's Electric characteristics(Diele ctric constant) 	
	Diffuse Transmission Sp	ecular Transmission	Lidar	Infrared light	■ 905nm	 Material's Infrared refraction characteristics 	

Space design model operates Ray tracing based on each Sensor & Radio wave principles

Space design method on each Sensor

Camera

Calculate refraction with Rendering equation

$$L_r(x,\omega) = \int_{\Omega} f_r(x,\omega,\omega') L_i(x,\omega')(\omega',n) d\omega$$

Lidar

Calculate Intersection point of pulse wave Power of receive wave

$$P_r = \frac{\rho}{\pi} \frac{A_{RX}}{R^2} P_t$$

Rader

Calculate receive electric power with Rader equation

$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4}$$

 P_r : Recieve electirc power P_t : Transmit electric power G_t : Transmit antenna gain G_r : Recieve antena gain λ : Length σ : RCS R: Distance

Initial release of Functional simulation

1st release platform

- Switch the Sensor model to DIVP origin from CARLA's base
- FY2018 implement LiDAR model, and expand Camera, Rader next Fiscal year

intensity

Initial release of Functional simulation

PF first edition

Research of HILS architecture utility using Injection methodology

Challenge for Injection technology

Enable to validate Black box models with using Injection technology, which can connect signal after perception as a input to recognition of actual Sensor and get output

FY 2018 outcome

Project summary

(1) Virtual Validation platform research

(2) Models requirements & Interface research

(3) Measurement design research

Studied & Defined each Modeling requirements & Interface spec for platform architecture design

FY2018 output

[1] [Test data generator research] Defined Interface Input/Output of Test data generator = SDM generator*1

Study of SDM generator

Platform sample for study	l/F	Name	Format	Contents
Definition of Test data generator structure for Interface study Environment Test data generator Space design		Model (Asset)	umap	 Translate fbx to umap Refer of Material information
	Model relates	Material	csv	Prepare ,material information with CSV
model SDM Generator Cenerator Plugin Ray-tracing Path-tracing		Road network	Open DRIVE	Output OpenDRIVE format information for Autonomous model
Advantage Able to absorb OS difference Able to use CPU power with Distributed processing Able to enhance thru put with pipe line processing	Communi cation I/F	Commun ication	UDP	 Internal communication done by Packet communication thru UDP Outer communication use API thru SDM Generator Plugin

*1 SDM Generator : Space Design Model Generator

1 [Test data generator research] Environment model has each Sensor's sensing characteristics base reflection data

Environmental model Sample

Source : Image from Mitsubishi Precision

1 [Test data generator research] Environment model has actual measured characteristics realizes Accurate test data vs General simulator

Data structure sample

Data structure

Contents				
Base Color	Definition of material color			
Metallic	Parameter the material is Metal or not			
Specular	Reflecting ratio			
Roughness	Surface roughness parameter			
Emissive Color	Definition of emissive color			
Normal	Normal on surface			
Ambient Occlusion	 Definition of environmental light reduction ratio 			
BRDF	 Definition of by-directional reflection ratio distribution 			
BTDF	 Definition of by-directional transfer ratio distribution 			

𝔅 Understudy of parameter value

Contents

1 [Test data generator research] Test data generator referring detailed materials onto Polygon so that realize Precise Test data

Test data generation sample

Polygon model

1 [Test data generator research] Example of test data by SDM Generator

Example of SDM Generator

%SDM Generator generate Test data from Assets & Scenario input

1 [Test data generator research] Example of test data by SDM Generator

Example of SDM Generator

SDM Generator generate Test data from Assets & Scenario input

Source : CG image from Mitsubishi Precision

1 [Test data generator research] Example of test data by SDM Generator

Example of SDM Generator

SDM Generator generate Test data from Assets & Scenario input

Source : CG image from Mitsubishi Precision

1 [Test data generator research] Researched test data formats for validating recognition in Autonomous

Research results of OpenDRIVE and OpenSCENARIO standard formats related to recognition

Research abroad	 We participated in OpenDRIVE and OpenSCENARIO workshops held by Association for Standardization of Automation and Measuring Systems (ASAM) in Germany for 4 days from January 15. With the current versions of OpenDRIVE and OpenSCENARIO, recognition-related functions in autonomous Vehicles have not been completed. ASAM expects to refer to the definitions of other standard for properties of materials which are key for OpenDRIVE Sensor simulations. Participants in the OpenSCENARIO workshop proposed adding information on the mounting positions of Sensors such as cameras. For OpenSCENARIO, there was a movement toward adding environmental conditions that impact on Sensors, such as precipitation, fog, wind, and lighting.
Research in Japan	 ASAM Japan plays the central role in encouraging the standardization of OpenDRIVE and OpenSCENARIO based on Japan's specifications. We participated in the OpenDRIVE Concept Project for its next version 2.0. We will incorporate Japan's specifications into OpenDRIVE, and describe properties of materials which are key for Sensor simulations.

Conclusion

OpenDRIVE can be used in the DIVP. However, it is necessary to incorporate Japan's unique specifications, and properties of materials used in roads and facilities into OpenDRIVE.

 \rightarrow By working together with ASAM Japan, incorporate the DIVP specifications into OpenDRIVE next version 2.0.

It is difficult to use the current version of OpenSCENARIO in the DIVP, and it is also uncertain at this moment when the next version of OpenSCENARIO will be developed. \rightarrow Draw up DIVP scenario format specifications by referring to the current version of OpenSCENARIO and harmonizing with a scenario format to be developed by JAMA.

Project title	Timing	Participation	Purpose
OpenDRIVE Transfer Project	Apr 2019 to Sep 2019	No	Project to update the current version 1.4, and move toward standardization
OpenDRIVE Concept Project	Apr 2019 to Aug 2020	Yes	Concept Project for the next version 2.0
OpenSCENARIO Transfer Project	Apr 2019 to Dec 2019	No	Project to update the current version 0.91, and move toward standardization
OpenSCENARIO Concept Project	TBD	Yes	Concept Project for the next version 2.0

[2] [Camera model & IF research] Consider requirements that should be modelled for camera simulations

Configuration of the camera model and related peripheral functions

Configuration of the camera model

Components

(A) Space Design Vehicle runs	No	Function	Outline
Model Camera Footage Offline Validation tool Recognition engine (Select one entity) Image: Compact of the select one entity) Image: Compact of the select one entity) Image: Compact of the select one entity) Scenario Generator (B) Camera physics model Image: Compact one entity) Image: Compact one entity)	(1)	Camera recognition engine	It is a camera Sensor function (commercially available recognition engine) that recognizes Vehicles, pedestrians, and others with input from high-definition CG images.
Rendering Engine CG visual Correct value determination tool (Vehicles, pedestrians, lanes) Exposure Lens (Exposure control) (1) (4)	(2)	Standard input Interface	It receives, sends, and buffers exposure control signals, high-definition CG data, and Vehicle behavior data.
Control model High-definition CG image (online) Buffer Monocular camera recognition engine (mass production) CG image Offline Offline Work on (A) or (B) Vehicle (vehicle behavior (vehicle speed, Vehicle behavior Vehicle (2) Entity A's product Monocular camera recognition engine (mass production) CG image Offline CG visual Recognition result CG visual Recognition result	(3)	Offline input file	Data received in a file from the environment model includes high-definition CG images and Vehicle behavior data.
Road, Traffic, Object Offline input file Offline input file Offline input file CG image CG image Vehicle Vehicle	(4)	Standard output Interface	It determines coordinate axes of location information including one on recognized 3D objects
Camera function Becognition result and target info (nositions and sizes in camera coordinates) Image and target info (control	(5)	Output file	It includes output data of the camera's recognition results, and high-definition CG images that the camera recognition engines receives.
model Control Control Control Control Control Scope of work by Hitachi AMS Online Online Online Online	(6)	Validation system of real Vehicle data	It compares the camera's recognition results collected from a running Vehicle with correct values ¹ , and validates recognition performance. (¹ Calculated by human based on collected footage)
	(7)	Validation system of the camera physics model	It compares results that the camera recognition engine recognizes with the environment model's true values, and validates recognition performance.

2 【 Camera model & IF research 】 Defined the camera model's Input Interfaces

The camera model's input Interfaces

No	Communications	Туре	Send	Receive	Outline
1		High-definition CG data			 One-frame CG data Data includes Bayer images and timestamped data
2	Online	Vehicle behavior data		Camera model	 Data on Vehicle behavior in a virtual space Data includes Vehicle speed, steering angle, accelerator position, brake pressure, gear position, engine speed, and timestamped data
3		High-definition CG data file	High- definition		 High-definition CG data made up of several sequential frames Data is stored in a BMP file per frame, and its file name contains timestamped information
4	Offline	Vehicle behavior data file	CG tool		 Data on Vehicle behavior in a virtual space Data includes Vehicle speed, steering angle, accelerator position, brake pressure, gear position, and engine speed Data is stored in a file per frame, and contains timestamped information
5		Camera function model's recognition results		Validation tool	 The camera function model's recognition results Results show the location information and type of 3D objectives (Vehicles and pedestrians), road markings, etc.
6	Offline Running Vehicle data	Running Vehicle footage			Camera footage obtained from a running Vehicle
7		File of recognition results	Vehicle	Validation tool	Tool outputs several 3D objectives (Vehicles and pedestrians) simultaneously, including the location information and type of 3D objectives and road markings that the camera recognizes while the Vehicle is running.

2 [Camera model & IF research] Defined high-definition CG requirements and overall configuration

Elements that should be reproduced in high-definition CG

2 [Camera model & IF research] Implemented the requirements definition of high-definition CG and defined the whole configuration

High-definition CG overall configuration and requirements

2 【 Camera model & IF research 】 Defined the output Interface of the camera model

Interface of the camera model

No	Communication s	Туре	Send	Receive	Outline
1		Exposure control:	Camera model	High- definition CG tool	 Signal to instruct exposure control to definition CG tool Exposure control includes shutter time (msec) and gain (dB). The high-definition CG tool determines the exposure (brightness) of CG data to be generated based on this signal.
2	Online	Camera information	Camera model	High- definition CG tool	 Camera model information It includes information such as color filter, number of pixels, pixel pitch, shutter type, frame rate, angle of view (focal length, distortion, resolution (concentric circle) and the like.
3		Recognition result	Camera model	Fusion	 Position information and classification of solid objects (Vehicles and pedestrians) and white lines recognized by the camera model. Output multiple solid objects at the same time. Also includes reliability information.
4	Offline	Recognition result file	Camera model	Evaluation tool	 Position information, type, etc. of solid objects (Vehicles and pedestrians) and white lines recognized by the camera model Output multiple solid objects at the same time. Also includes reliability information.
5		High- definition CG data file	Camera model	Evaluation tool	 CG data generated by high-definition CG tool It is composed of a plurality of consecutive frames, and one frame is stored in one BMP file. File name includes timestamp information.

[2] [Camera model & IF research] Defined the output Interface of the camera model

Exposure control Interface

Correction of the brightness of high-definition CG image is necessary to realize the optimum recognition performance. Exposure control information for brightness correction of an image is defined for a high-definition CG generation tool.

Classification	Name	Description	Unit
Exposure	Exposure time	 Output exposure time per line 	µsec
control	Gain information	 Output gain value of camera output 	-
Degree of reliability	Detection reliability	 Output the detection reliability of the target 	%

Camera information Interface

Model-based optical correction is required to achieve optimal recognition performance.

The camera function / Physical model specifications are defined as a camera information Interface.

Cla	ssification	Name	Description	Unit
		Horizontal pixel count	 Output the number of horizontal pixels of the Sensor 	pixel
		Vertical pixel count	 Output the number of vertical pixels of the Sensor 	pixel
Ser	isor	pixel pitch	 Output the pixel pitch of the Sensor 	Um
spe	cification	Bit width	 Outputs the bit width of Sensor data 	Bit
		Color filter	 Output Sensor color filter 	-
		Shutter type	 Output the shutter type of the Sensor 	-
Len	Lens specification	Focal length	 Output lens focal length 	mm
spe		Polarized filter	 Output the presence or absence of a polarization filter 	-
	Recognition specification	Recognition delay amount	 Output the amount of delay for imaging frame and recognition frame 	frame
Rec		Longest recognition distance	 Output the longest recognizable distance 	m
spe		Shortest recognition distance	 Output the shortest recognizable distance 	m
		Maximum recognition angle (left and right)	 Output maximum recognizable left and right angle 	deg
		Maximum recognition angle (up and down)	 Output maximum recognizable upper and lower angles 	deg

Camera model & IF research] Defined the output Interface of the camera model

Recognition result Interface

Classification	Name	Description	Unit
Time	Imaging time	Output camera imaging time	µsec
information	Recognition time	Output camera recognition time	µsec
Diagnostic information	HALT information	Output whether the camera is working properly	-
Exposure	Exposure time	Output exposure time per line	µsec
control	Gain information	Output gain value of camera output	-
Townsh	Screen coordinates (X,Y)	Output target center coordinates on camera image	pixel
information	World coordinates (X,Y,Z)	Output target center and facing center coordinates based on lens focal position	m
standard)	Size (X,Y,Z)	Output target size	m
	Speed (X,Y,Z)	Output the moving speed of the target	km/h
Target	World coordinates (X,Y)	Output target center and facing center coordinates based on center of front wheel axle	m
information (Vehicle	World coordinates (Z)	Output target coordinates based on tire contact area	m
standard)	Size (X,Y,Z)	Output target size	m
	Speed (X,Y,Z)	Output the moving speed of the target	km/h
	Vehicle recognition number	Output recognition number of Vehicle objects	-
	Pedestrian recognition number	Output recognition number of pedestrian object	-
	Other target recognition number	Output number of recognition of other objects	-
Target	Vehicle, Vehicle type	Output Vehicle type of recognition target	-
information	Vehicle angle	Output the angle with the Vehicle to be recognized	deg
	Pedestrian orientation	Output the direction of the pedestrian's front	-
	Pedestrian type	Output pedestrian type to be recognized	-
	Other type	Output object type of other recognition target	-

Classification		Name	Description	Unit
ĺ		Own lane recognition information	Output white line recognition status	-
	Own lane	Left and right lane@ 10,20,30m	Outputs the lateral distance of the left and right lanes 10, 20 and 30 m from the center position of the host Vehicle	m
	information	Road radius of left and right lane	Output road radius of left lane	m
		Yaw angle to left and right lane	Output the yaw angle of the Vehicle relative to the left lane	deg
		Distance to the left and right lanes	Output distance between left lane and own Vehicle center	m
	Own lane type information	Left and right lane type	Output left lane type	-
	Next lane information	Next lane recognition information	Output white line recognition status	-
		Left and right adjacent lanes@10,20,30m	Outputs the lateral distance of the left and right lanes 10, 20 and 30 m from the center position of the host Vehicle	m
		Road radius of left and right adjacent lanes	Output road radius of left lane	m
		Yaw angle to left and right adjacent lanes角	Output the yaw angle of the Vehicle relative to the left lane	deg
		Distance to left and right adjacent lanes	Output distance between left lane and own Vehicle center	m
	Next lane type information	Left and right adjacent lane type	Output left lane type	-
	Degree of	Target detection reliability	Output the detection reliability of the target	%
re	eliability	White line detection reliability	Output white line detection reliability	%

2 【 Camera model & IF research 】 Stradvision selected as camera model evaluation engine

Environment construction by Stradvision

Source: Stradvision SVNet

2 [Camera model & IF research] Defined an evaluation scenario for camera model Verification.

Camera model evaluation scenario example

No	Implementation period	ltem	Image	Outline
1	First half of	 Basic scenario Leading Vehicle approaching 	the set	 Approaching the Leading Vehicle while stopped (equivalent to E-NCAP2018 CCRs) Straight and curved road
2	2019	 Basic scenario Leading Vehicle separation 		Leading Vehicle separationStraight and curved road
3		 Middle obstacle (rain and wiper) Leading Vehicle approaching 		 Approaching the Leading Vehicle while stopped (equivalent to E-NCAP2018 CCRs) Activate the wiper when it rains Recognition disorder occurs due to image disturbance by wiper
4	Second half	 Middle obstacle (rain and wiper) Leading Vehicle separation 		Leading Vehicle separation under the same conditions as above
5	of 2019	 Light source failure (backlight) Leading Vehicle approaching 		 Approaching the Leading Vehicle while stopped (equivalent to E-NCAP2018 CCRs) While driving toward the west sun, whiteout occurs and we lose sight of the target Vehicle traveling ahead.
6		 Light source failure (backlight) Leading Vehicle separation 		Leading Vehicle separation under the same conditions as above
7	2020	 Road obstacle Night, pedestrian 		 At night, people who came in dark clothes cross the sidewalk (equivalent to E-NCAP2018 CPAF + night)
8		 Recognition disorder expansio (Determined in coordination with the second second	n ith JAMA requirements)	Night driving, oncoming high beam, step, tunnel exit, wet road surface, traffic light, dropped objects, construction lane reduction, etc.

source: https://pxhere.com/

[3] [Rader model & IF research] Rader modeling space design model collaboration is important

Modeling design

3 [Rader model & IF research] Higher correlated model by Pre-processing in Space design model

In/Out signal

3 [Rader model & IF research] Research subject in the generation of relative velocity signal for modeling

Radar modeling requirements

In the case of reproducing a method of repeating high-speed chirp, it is necessary to execute ray tracing for each chirp, which requires a large amount of calculation.

The relative velocity of the target is received from the system to generate a Doppler signal.

For multipath, it is necessary to study the method of calculating from the relative velocity between multiple reflection points.

3 [Rader model & IF research] Select actual Sensor specifications from calculation of detection distance and speed by actual measurement

Examination of specifications of radar implementation

* SNR: Signal to Noise Ratio

3 [Rader model & IF research] Defined an evaluation scenario for radar model Verification

Evaluation scenario example of radar model

Extraction of evaluation object

Extract factors that should be preferentially evaluated based on the situation that becomes an issue in radar sensing

Situation that becomes problem	Selected malfunction factor
 Object with low reception strength, or dropout situation 	Bike, rain, snow
 Situation where ghosting occurs due to multipath 	Road side wall
 Misrecognition occurs due to low resolution 	Information sign, manhole
 Situation in which a Doppler signal detection error occurs 	Tire

Examination of sample evaluation scene

Scenario

A scene where another Vehicle overtakes while following the leading Vehicle on a dedicated road

Asset

·Own Vehicle (Radar mounted forward)

Leading Vehicle, Following Vehicle (Including bikes)

- Guardrail
- Road surface
- Road side wall
- Information sign
- ∙Rain, snow

Evaluation items

- ·Reflections from leading and passing Vehicles
- ·Doppler signal by tire rotation
- ·Reflection by guardrail pole
- Multipath from the road side wall
- ·Reflection by information sign
- ·Attenuation due to rain and snow

[1] US Patent, US 6,661,370

- [2] https://www.jsae.or.jp/~dat1/mr/motor36/06.pdf
- [3] Victor C. Chen et al., "Radar Micro-Doppler Signature," The Institution of Engineering and Technology

4 [LiDAR model & IF research] Study of modeling requirements for LiDAR simulation

Modeling

4 [LiDAR model & IF research] Clarification of the modeling factors by examination of signal propagation model (optical model)

Optical model including sunlight Optical model Target $E_t(A,R)_{\Omega_{\rm RX}}$ **RX** aperture solar irradiance E_{h} AIFOI ARX Target $E_t(A,R)_{\Omega_{\rm RX}}$ **RX** aperture AIFOI Receiver ARX Receiver $\Omega_{\rm IFOV}$ AIFOV $\Omega_{\rm IFOV}$ AIFOV R R Area onto which transmitted light is irradiated • Footprint [m²] A_{IFOI} $P_b = \frac{\rho}{\pi} \int_{A_{IFOV}(R)} \int_{\Omega_{RX}(R)}$ $E_b dA d\Omega$ Area from which reflected light can be received [m²] A_{IFOV} Reception solid angle of receiving lens aperture [sr] Ω_{RX} $= \frac{\rho}{\pi} \frac{A_{RX}}{R^2} R^2 \Omega_{IFOV} E_b$ Instantaneous field of view (solid angle) [sr] Ω_{IFOV} Reception aperture area [m²] A_{RX} $= \frac{\rho}{\pi} A_{RX} \Omega_{IFOV} E_b$ Distance between the target surface and the Sensor [m] $E_t(A, R)$ Irradiance distribution on the target surface [W/m²] E_{h} Irradiance from the sun

Signal propagation model (optical model)

$$P_r(R) = \frac{\rho}{\pi} \int_{A_{IFOV}(R)} \int_{\Omega_{RX}(R)} E_t(A, R) dA d\Omega$$
$$= \frac{\rho}{\pi} \frac{A_{RX}}{R^2} P_t$$

 ρ : Target emissivity, where the reflection characteristic is the Rambert reflector Pt: Transmitting light power

 E_{b} Irradiance from the sun $S/N \propto \frac{P_{r}^{2}}{P_{b}}$ * LiDAR performance improves as S/N becomes higher. * For S/N, there is a relationship between Pr and Pb as shown on the left formula, where Pr is the receiving reflected-light power from the target which is the signal component, and Pb is the background sunlight power which is the main noise component. AR modeling, Target reflection characteristics,

For Accurate LiDAR modeling, Target reflection characteristics, Propagation-decay property and Background lights power should be essential factors which affects to Pb and Pr.

4 [LiDAR model & IF research] Clarification of the modeling factors by examination of Scan model requirements

Scan model

- Optical model simulating optical transmission and reception at each scanning angle (θk , φk)
- Since a transmitted light spreads at a solid angle as shown in the optical model, a target surface is taken into account for modeling.
- Calculation procedure of a spread light is based on the concept of Ray tracing
- The parameters affect to detection rate and ranging accuracy are Target reflectivity, Distance, Solid angle of light reception, and Reflected light intensity from other light sources represented by the sun (background light)

4 [LiDAR model & IF research] Speeding up of Scan modeling - can be controlled by "Footprint"

Scan model

4 [LiDAR model & IF research] Study & defined LiDAR model In/Out Interface

LiDAR Interface

Class	Method	Input	Output	Return	Processing
Sensor Component	GetPosition	I -	Place	-	Sensor position
	GetOrientation	-	Angle	- -	Sensor angle
	AdjustPosition	Current time	-	-	Sensor point correction
	AdjustOrientation	Current time	-	■ - I	Sensor angle correction
	Tick	Progress time	-	■ - I	Common processing
LiDAR Component	InitLiDAR	Spec file name	-	- -	LiDAR model initialization
	OutputSensorData	Point cloudPower	-	■ - 1	Sensor data output
LiDAR Model	GetShootList	Current timeSimulate time in a flame	Shot numberTime stampTransmit angle	∎ - 1	Shot angle
	SetReceiveInfo	 Shot number Time stamp Shot angle distance Return light Back ground light density 	■ -	■ -	Receive info
	DoSensorProc	-	-	-	Internal Processing
	GetSensorData	■ -	Point cloudPower	■ -	Sensor data
Time Keeper	GetSimTimePerFra me	■ -	Simulate time in flame	■ -	Simulate time in flame
	GetCurrentTime	■ -	 Current time on simulator 	■ -	Current time on simulator
Env Model	CalcInfraredPropag ation	Shot pointShot angle	 Distance Reflect light Back ground light density 	■ -	 Infrared light propagation calculation

4 [LiDAR model & IF research] Defined objects for LiDAR model Verification

Defined high-way objects from LiDAR point of view

- The minimum number of objects are defined for high-way scene only, for those of the other scenes will be defined later on.
- Priority of object selection
 - 1. Minimum required objects in high-way
 - 2. Passenger Vehicle
 - 3. Infra objects (easy to detect for LiDAR)
 - 4. Large Vehicle, Motor cycle

1. Minimum required object in high-way

Priority	Objects	memo
1	Road (Asphalt)	City
1		Major lane
1	White line	Side lane
2		Splitter
2		Guide(text)
2		Guide (arrow)
3	Yellow line	No overtake

2. Passenger Vehicle

Priority	Objects	memo
1	White	
2	Silver	
2	Blue	
2	Red	
*	Black	Reason of miss-detection (difficult to detect)

3. Infra objects (easy to detect for LiDAR)

Priority	Objects	memo
1	Curb	
1	Guard rail	
1	Delineator	Round
1		Insulation wall
2	vvan	Use Retro reflection
1	Splitter post	
2	Splitter corn	
2	Road (Asphalt)	Other than No1
2	Road(concrete)	Tunnel
2	Road	Red paint
2	dots butts	CaťsEye
2	Guard rail	Use Retro reflection
3	Guard wire	Potential risk for Reason of miss-detection

4. Large Vehicle, Motor cycle

Priority	Objects	memo
1	Motor cycle	
1	Truck	Modeling 4t
	Dump	
	Trailer	
	Cargo	
	Tank role	
1	bus	

FY 2018 outcome

Project summary

(1) Virtual Validation platform research

(2) Models requirements & Interface research

(3) Measurement design research

Defined Measurement method & measuring objects for Highly correlated Environment model

FY2018 outcome

D2. Nihon Unisys Validation platform has standardized Interface

Measuring specific characteristics defining BRDF &BTDF* for Highly correlated Environment model

Measurement method reasonability

- Using Ray-tracing is the reasonable solution
- Realize accurate simulation, needs accurate modeling with using Reflection / Refraction / Transmission characteristics
- In reality, reflection from object is not ideal because of roughness on surface and the roughness is important factor for accurate simulation

Necessary of BRDF · BTDF measurement

- Able to realizing affect for Sensor detection by object's roughness, color etc.
- Able to realize Sensor Miss-detection due by Multi-path and/or background light, etc.

Measurement method

Back ground

Affects of roughness

^{*} BRDF: Bidirectional Reflectance Distribution Function, BTDF: Bidirectional Transmittance Distribution Function

Defined measuring objects from Sensor physics

Measurement items

Category	object	Memo	Lidar	Radar
Road surface	Asphalt		0	0
	Asphalt(RED)		0	
	Concrete		0	0
	White line		0	
	Yellow line		0	
ides s	Side wall		0	0
	Guard rail	Retro reflection Yes / No	0	0
	Road Pole		0	
ect	Curb		0	
Road b obj	Botts Dots		0	
	Delineator		0	
	Guard wire		0	
	Road sign			0
	Grass		0	0
Ś	Bumper		0	0
art	Tire / Wheel		0	0
e D	Miller		0	
icle	Reflector		0	
/eh	Front / Rear lamp		0	
>	Number plate		0	
	Paint	White peal, Silver, Blue, Red, Black	0	
Moving objects	Passenger Vehicle		0	0
	Motor cycle		0	0
	Truck		0	
	Dump		0	
	Trailer		0	
	Cargo		0	
	Tank role		0	
	Bus		0	

Designed measurement facility so that needed characteristics measurement

Millimeter wave measurement for Rader

Infrared wave measurement for LiDAR

[Example] Measurement facility

Measurement facility example

Millimeter wave measurement Room

Millimeter wave measurement lane

END