Analysis of automated driving diffusion: Diffusion paths into the German car market

Dr. Christian Winkler SIP-adus Workshop, November 09 2021

In collaboration with: Nina Thomsen, Dennis Seibert (DLR) Prof. Tobias Kuhnimhof, Michael Schrömbges (RWTH) Dr. Thomas Meissner (BMW)

Wissen für Morgen

Modeling the diffusion of connected automated driving (CAD) is based on answering several research questions

GROUP

Different scenarios consider the diffusion of CAD through the private car and the MaaS vehicle market

Model assumptions on the entry of level 4 automated vehicles into the German market are derived from interviews with industry experts

Given market entry and additional costs of automated private cars their share in the stock will be around 43% in 2050 (scenario without MaaS)

Selected results: Diffusion of CAD through automated private cars only

A discrete choice model for car ownership in households is being developed

Impact of autonomous MaaS on car ownership – first results

ISB Chair and Institute of Urban and Transport

MaaS diffusion path

• MaaS is implemented as ridesharing or taxi mode in urban areas

BMW GROUP

 Ridesharing (yellow) or taxi mode (red) lead to decrease of up to 2% of vehicle stock

SIZE OF VEHICLE STOCK IN DIFFERENT REGIONS (REFERENCE 2050 = 100%)

A german-wide transport demand model is being extended, to analyze the impacts of automation on travel demand

Impact of autonomous MaaS on transport demand – first results

- MaaS services are available in 55 service areas across Germany.
- Simulations for a test region (marked in pink) show:
 - Taxi (7%) are preferred to shared MaaS trips (5%).
 - If all MaaS trips must be shared, MaaS accounts for 6% of all trips.
 - MaaS vehicles lead to increased activity on roads and influence travel times and distances.

Evaluation of the consequential effects of CAD diffusion scenarios

Chair and Institute of Urban and Transport BMW GROUP

Evaluating the importance of different CAD diffusion scenarios for a sustainable mobility transition.

Presentation of the central results together with those of the Japanese partners as a joint book publication.

Conclusion and outlook

- With this project we are applying a unique and solid model chain to adequately display different likely diffusion paths of automated vehicles into the German market and their effects on sustainability and the industry.
- The applied model chain enables us to shed light into the discussion (in Germany), whether and under which conditions automation might contribute to a sustainable mobility transition.
- The Japanese-German collaboration:
 - The joint reflection of assumptions, scenarios and model approaches is very beneficial for the project activities.
 - Comparisons on CAD diffusion in Japan and Germany given structural similarities but also geographical, social and regulatory differences are helpful for the development and implementation of CAD.

Thank you for your attention!

Dr. Christian Winkler DLR Institute of Transport Research christian.winkler@dlr.de

