

Introduction(An aim)

▶ ☐ Aim of our research & overall scheme

Introduction (Driver's License)

▶□ Difference of driver's license between Europe & Japan (eyesight/visual field)

Introduction(課題)

Introduction(全体計画)

⊳Research agenda

Introduction(Research system)

Issue a. (Collection of DS data)

a.	Construction of driving database for visually impaired and normal persons, clarification of accident factors specific to visually impaired persons	FY2018	FY2019	F <mark>Y2</mark> 020
	i. Construction of driving database for visually impaired and normal persons	Collection	of DS data	Present
	ii. clarification of accident factors specific to visually impaired persons		DS-data analysis	

RIKEN Principle verification (device & method)

EC TohokuNiigata Inoue

Medical institution	Case (RP)	
Kobe Eye Center Hospital	89(61)	
Tohoku university	41(19)	
Niigata university	89	
Nishikasai Inoue ganka clinic	40(1)	

Issue a. (DS data analysis-1)

Clarification of accident factors peculiar to visual field impairment

▶□ Overlay with risk aversion

[DS data analytics] Deloitte Tohmatsu LLC

Issue a. (DS data analysis-2)

►□Number (104/108)

Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27)

▶□Objects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data

►□Number (104/108)
Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27)
►□Obiects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data, Visual impairment

In the risk scene from the right, many accidents occurred in the C4 (■ severe total defect) cluster.

In the risk scene from the right, many accidents occurred in the C4 (■ severe total defect) cluster.

Issue a. (DS data analysis-3)

►□ Reversible analysis (Scene to/from Cluster)

►□Number (104/108) Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27)

▶□Objects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data, Visual impairment

In the risk scene from the right, many accidents occurred in the C4 (■ severe total defect) cluster. Scene→Cluster

Scene

oriented

In the downward defect (C6) cluster, many accidents occurred in scenes 3, 6 and 7. Cluster→Scene

Issue a. (DS data analysis-4)

▶□ Detailed medical verification is possible by accumulating detailed clinical information (eg., disease

type).

►□Number (104/108)

Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27)

▶□Objects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data

Red: Cataract

In the risk scene from the right, many accidents occurred in the C4 (severe total defect) cluster.

▶□ Database

Data collection(DS, visual field etc.)

- ↓ SOM analysis(Clustering)(left upper)
- 1: DS data analysis (right upper)
- 2: Detailed analysis of disease type(left bottom)
- (3): Construction of database

Issue b (Driving data collection by a high-performance DS)

- ► □ Eye-tracker (4 IR-cameras + 2 IR-LEDs) are installed in the Driving Simulator cockpit
- ▶5 types of scenarios (5 different events in each scenario)
 - Scenario 2 5: Runs autonomously (Surveillance as if it is manual driving)
 - Scenario 1 : Operates gas and brake pedals (Warning to the pedestrian crossing and hit the brake)
- ▶Participants: 10 non-patients, 15 glaucoma patients*

High performance DS

Eye tracker (SmartEye)

Careful events examples

Issue b (Driving data analysis-1)

- ▶□Among the data of the patients, there are some noise due to the glasses
 - → Based on the head tracking data, numerical simulation is conducted for the accident reduction estimation
- ▶ Modeling of head movements showed that there was little difference between non-patients and glaucoma patients

Non-patients: $\underline{A} = 37.63$

Patients: *A*= 39.13

 $T_{=} 4.22$

T = 4.06

Head movements AT the stop intersection

Non-patients : $x_0 = 0.14$ Patients : $x_0 = -0.04$

y = 1.97

y = 1.99

Head movements EXCEPT the stop intersection

Issue b (Driving data analysis-2)

- ▶☐Gaze movement was analyzed by the head-mounted display with the eye tracker
- ► Modeling the gaze duration for the pedestrian
- ► Modeling the overlooking probability for the traffic signals
 - Overlooking probability is statistically higher by the serious visual field loss (VFL)

Overlooking times for the traffic signals

Issue b (Numerical simulation for accident reduction estimation

- ▶□ Preliminary results of the simulation shows the effectiveness of autonomous brake
- ► Head/gaze data by DS is used for further simulation
 - Higher accuracy, more ADAS system validation including (e.g., Front-side collision avoidance brake,

FCW)

Preliminary results of the numerical simulation

Issue c. (Medical approach & External cooperation)

Current status

- ✓ □ Clinical weakness
- ✓ □ Driving risks
- ✓ □ Technology
- -Specific measures
- —Coaching

In future

Take the opportunity to know and receive a prescription for specific measures in a driving outpatient

Issue c. (Medical approach: Driving outpatient @Kobe)

In

Dr

Dr: Medical Doctor Rs: Researcher In: Inspector

↑② IC & DS test In

←③ IC & Line-of-sight test

Dr Rs

↓ 4 Counseling

DS score sheet

Scene	Risk type	Score (Bad=0, 1, 5=Fine)	Speed Condition	
1	A signal		50km/h	
2	Jumping out from the left		Two lanes on each side	
3	Oncoming vehicle turn right			
4	Jumping out from the right			
5	A signal			
6	Jumping out from the left			
7	Oncoming vehicle turn right			
8	Jumping out from the left		40km/h	
9	A signal		One lane on each side	
10	Jumping out from the right		30km/h One lane	
11	Stop sign			
12	Jumping out from the left			
13	Jumping out from the left			
14	Stop sign			
15	Jumping out from the right			
Sum Scor	е			

Visual field test results

Issue c. (External cooperation)

