「Strategic Innovetion Promotion Program (SIP) Phase Two / Automated Driving
(Expansion oystems and Sevices)
Research of ADA for for people with visual field defects

RIKEN
Nagoya university University of Tsukuba

Introduction(An aim)

\square Aim of our research \& overall scheme

Introduction (Driver's License)

- \square Difference of driver's license between Europe \& Japan (eyesight/visual field)

Introduction(課題)

- \square ADAS \& Visual function

Introduction（全体計画）

\triangleright Research agenda

Introduction(Research system)

- पResearch

Δ DS data analytics

\square : Head research institute
\square : Co-research institute 1
\square : Co-research institute 2
\square : Cooperation institute
■ : Subcontractor

Issue a. (Collection of DS data)

| a.Construction of driving database for visually impaired and normal persons, clarification
 of accident factors specific to visually impaired persons | FY2018 | FY2019 | FY2020 |
| :--- | :--- | :--- | :--- | :---: |
| i. Construction of driving database for visually impaired and normal persons | Collection of DS data | Present | |
| ii. clarification of accident factors specific to visually impaired persons | | DS-data analysis | |

EC TohokuNiigata Inoue	
Medical institution	Case (RP)
Kobe Eye Center Hospital	$89(61)$
Tohoku university	$41(19)$
Niigata university	89
Nishikasai Inoue ganka clinic	$40(1)$

Issue a. (DS data analysis-1)

\triangleright Clarification of accident factors peculiar to visual field impairment

- \square Clustering patients by clinical characteristics ${ }_{\text {C5 Severe }}$

- \square Risk scene

- \square Overlay with risk aversion

Issue a. (DS data analysis-2)

In the risk scene from the right, many accidents occurred
in the C4 (\square severe total defect) cluster.

Scene10: Mobility scooter coming out of the right

Issue a. (DS data analysis-3)

- \square Reversible analysis (Scene to/from Cluster)
- \square Number (104/108)

Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27) - \square Objects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data, Visual impairment

In the risk scene from the right, many accidents occurred in the C4 (\square severe total defect) cluster. Scene \rightarrow Cluster

Scene7 : Right turn of oncoming car

In the downward defect (C6) cluster, many accidents occurred in scenes 3, 6 and 7. Cluster \rightarrow Scene

- \square Detailed medical verification is possible by accumulating detailed clinical information (eg, disease type).
 - पNumber (104/108)

Niigata(27), Tohoku(37), Kobe(13), Nishi-kasai(27) - \square Objects

Age, Sex, Visual field, Accident history, eyesight, MD, DS data

In the risk scene from the right, many accidents occurred in the C4 (\square severe total defect) cluster.

Scene10 : Mobility scooter coming out of the right

Scene 15 : Truck coming out of the right

- \square Database Data collection(DS, visual field etc.) \downarrow SOM analysis(Clustering) (left upper)
(1): DS data analysis(right upper)
(2): Detailed analysis of disease type ${ }^{\text {(left bottom) }}$
(3): Construction of database

Issue b (Driving data collection by a high-performance DS)

- \square Eye-tracker (4 IR-cameras + 2 IR-LEDs) are installed in the Driving Simulator cockpit
$\rightarrow 5$ types of scenarios (5 different events in each scenario)
- Scenario 2-5: Runs autonomously (Surveillance as if it is manual driving)
- Scenario 1 : Operates gas and brake pedals (Warning to the pedestrian crossing and hit the brake)
-Participants: 10 non-patients, 15 glaucoma patients*

High performance DS

Eye tracker (SmartEye)

Imminent event examples

Careful events examples

Issue b (Driving data analysis-1)

- \square Among the data of the patients, there are some noise due to the glasses
\rightarrow Based on the head tracking data, numerical simulation is conducted for the accident reduction estimation \rightarrow Modeling of head movements showed that there was little difference between non-patients and glaucoma patients

$$
\begin{array}{cc}
\text { Non-patients }: \underline{A}=37.63 & \text { Patients : } \underline{A}=39.13 \\
T=4.22 & \underline{T}=4.06
\end{array}
$$

Head movements AT the stop intersection

$$
\begin{array}{rrr}
\text { Non-patients : } x_{0}=0.14 & \text { Patients : } x_{0}=-0.04 \\
Y=1.97 & Y=1.99
\end{array}
$$

Head movements EXCEPT the stop intersection

Issue b (Driving data analysis-2)

- \square Gaze movement was analyzed by the head-mounted display with the eye tracker
-Modeling the gaze duration for the pedestrian
- Modeling the overlooking probability for the traffic signals
- Overlooking probability is statistically higher by the serious visual field loss (VFL)

Gaze duration for the pedestrian

Overlooking times for the traffic signals

Issue b (Numerical simulation for accident reduction estimation

- \square Preliminary results of the simulation shows the effectiveness of autonomous brake
-Head/gaze data by DS is used for further simulation
- Higher accuracy, more ADAS system validation including (e.g., Front-side collision avoidance brake, FCW)

Preliminary results of the numerical simulation

Issue c. (Medical approach \& External cooperation)

\triangleright Issue c-i : Driving outpatient

Current status

$\checkmark \square$ Clinical weakness
$\checkmark \square$ Driving risks
$\checkmark \square$ Technology
-Specific measures
-Coaching
Return \& Alternative City
Return \& Alternative means
No alternative Suburbs
Give birth to
Essential (Job or Commuting) movement-restricted people

In future
Take the opportunity to know and receive a prescription for specific measures in a driving outpatient

Issue c. (Medical approach: Driving outpatient @Kobe)

Issue c．（External cooperation）

（1）Before driving outpatient

【For personal】
－Medical checkup
－Self medication
－Find the unaware group

【For group／company】
－Safety promotion
－Medical checkup
－Preparation of safety net

Transportation，Bus，and Taxi etc．

（3）After driving outpatient

【Dissemination and enlightment】
－Retrofit device
－ADAS
【Learning and training】
－Driving school
－Improvement and training（Line of sight）
【Institutional design】
－Administration
－Insurance industry
【Medical cooperation】
－Dementia
－Taking medicine and chronic condition
Cooperation with
medical association

