Introduction of Dynamic Map Session

SIP-adus workshop 2019

Satoru NAKAJO, the University of Tokyo

1. Overview of the session

2. Activities of SIP-adus and related activities

3. Status of the international collaborations

1. Overview of the session

Plenary (today):

Satoru Nakajo, the University of Tokyo

- Overview of Dynamic Map related activities
- Overview of OADF

Katsuya Abe, Director, ITS Policy and Program Office, Road Bureau MLIT

Hiroyuki Inahata, President, Dynamic Map Platform Co., Ltd.

Jean-Charles Pandazis, ADASIS & SENSORIS coordinator, ERTICO

Christopher T.Thibodeau, CEO & President, Ushr

Breakout workshop (tomorrow, invited only):

- ✓ For SIP-adus FOTs (2020 and the after),
- \checkmark For further international collaborations,

2. Activities of SIP-adus
> Results of the 1st Phase (2014-2018)
> The 2nd Phase of SIP-adus (2018-2022)

Concept of Dynamic Map

Dynamic Map FOT

Validation of specifications and precision of static, high-accuracy 3D map data Validation of data updating and distribution systems a.

- b.
- Validation of linkage of dynamic data delivered from infrastructure, etc. C.

Objectives

on

Test

details

- Confirmation of and agreement on final specifications toward practical implementation of the dynamic map Promoting standardization activities
- Promoting R&D on use of the dynamic map and development of applications
- Participation in opportunities to table desired features and proposals toward practical implementation of the Benefits of dvnamic map participati
 - Participation in examining details of proposals for standardizations
 - Acceleration of R&D at participating companies

Dynamic Map FOT

Participants: 22 participants

* Participants of the FOT for Dynamic Map or HMI

Test area: over 758km of Map data

Dynamic Map FOT

Data for Dynamic Map FOT

	Data	Data: detail	Media
· \$	(1)Dynamic	Traffic signal information	Advanced infrared beacon & 760MHz
	(2)Semi- dynamic	Lane-level traffic flow information (Probe data)	LTE
		Lane-level traffic restriction information	ETC2.0(5.8GHz)
	(3)Semi- static	NA	NA
	(4)Static	Map data	DVD
		Updated data	DVD+LTE

System for Dynamic Map FOT

FOT situations

Change Toad shape (3 lanes >>4 lanes) - Opdated Map

Semi-dynamic: Lane-level traffic restriction information

Semi-dynamic: Lane-level traffic flow information

Dynamic: Traffic signal information, vehicle location

Result of Dynamic Map FOT

- ✓ The documents had created as result of the FOT.
- ✓ These documents are available via the website.

http://en.sip-adus.go.jp/rd/

Result of the SIP-adus

FAO SERVICE

CONTACT JP EN NEWS COMPANY

SFRVICE

ABOUT US

TOP

Provided Service / Current Development Status

As at the end of March 2019, we have completed the initial preparation of data for 29,205 km of expressways and highways across Japan and provide the data for a fee. To deal with newly extended or altered roads, we have started preparing updated data. For ordinary roads, we assume that data preparation starts from densely populated areas.

Expressways and Highways Across Japan

We have completed the initial preparation of data for 29,205 km (link length) of expressways and highways across the country, and have begun providing this data for a fee since the end of March 2019. This data is now being used for highly accurate navigation, ADAS and automated driving applications by OEMs in and outside Japan. (The data is provided via map data providers.) We have also started preparing data for expressways and highways opened after our initial data preparation set, and this data will enter the market at the end of September 2019 (for expressways opened before the end of March 2019). We will also progressively update data for newly extended or repaired roads.

- ✓ Created a company (DMP) to produce base map.
- ✓ Start providing map data for expressways and highways from Mar. 2019. (total 29,205km)
- Automated vehicle with DMP data had already be released.

https://www.dynamic-maps.co.jp/en/index.html

2. Activities of SIP-adus Results of the 1st Phase (2014-2018)

The 2nd Phase of SIPadus (2018-2022)

11

Roadmap for Establishing Traffic Environment Information:

The cooperative infrastructure system will be standardized and commercialized through the FOT by establishing a test environment for utilizing dynamic information such as the traffic environment information, etc. provided by the traffic infrastructure.

Test Participants:

For a wide variety of people including overseas OEM, parts and system suppliers, universities, research organizations and venture companies.

Period:

- 1st stage field operational test (2019 to2020)
 - Field tests of necessary cooperative infrastructure technologies to achieve level 4 autonomous driving on freeways and ordinary roads.
- 2nd stage field operational test (2021 to 2022)
 - Modifications to the cooperative infrastructure technologies that came to light in the 1st stage FOT
 - Field operational testing for new R&D issues in preparation to establish a test environment for the legacy cooperative infrastructure system

Objective:

The purpose of the FOT and consensus-building is to create standardized specifications for how information is delivered, how to link information and information delivery specifications by establishing a test environment utilizing traffic environment information.

*The technological topics may increase/decrease according to R&D progress

Test zone and Verification contents:

- ✓ FOT will be performed in three different areas, envisioning three different scenarios.
- ✓ Test participants can participate in FOTs in one or more areas.

Test zone	Verification contents	
Waterfront City area	Impact assessment of cooperative infrastructure system field test on Ariake and Odaiba ordinary roads using a level equivalent to SAE level 2 – 4 autonomous vehicles and road traffic	End Point (Shiodome) Shiodome (Exit)
Haneda Airport area	Impact assessment of cooperative infrastructure system field test in the Haneda Airport zone with next-generation city traffic ART (a level equivalent to SAE level 2 / 4) using autonomous driving technology and road traffic	End Point (Tokyo Waterriront City area) J Rinkal-fukutoshin (Exit) Airport West Entrance) Bayshore Route (Entrance) Bayshore Route (Tokyo Waterfront City area] (Prop
Metropolitan Expressway routes connecting Haneda Airport and the Waterfront City area, etc. (including ordinary roads)	Field operational test of cooperative infrastructure system (merge assist and ETC gate pass assist) on water front highway using a level equivalent to SAE level 2 – 4 autonomous driving cars and impact assessment of road traffic	Merge assist and ETC gate pass assist Starting Point (Haneda Geospatial Information Authority (electronic national map website) [Expressway Connecting Haneda Airport with the Tokyo Waterfront City, etc.] (Proposal) (Haneda Airport Zone] (Proposal)

15

AISAN TECHNOLOGY CO., LTD. Valeo Co., Ltd. SB Drive Corp. **Epitomical Limited** Kanazawa University **Continental Automotive Corporation** Saitama Institute of Technology JTECT CORPORATION SUZUKI MOTOR CORPORATION SUBARU CORPORATION Sompo Japan Nipponkoa Insurance Inc. DAIHATSU MOTOR CO., LTD. Chubu University Tier IV, Inc

TOYOTA MOTOR CORPORATION Nagoya University NISSAN MOTOR CO., LTD. BMW Group Hino Motors, Ltd. Field auto Inc. Volkswagen Group **Bosch Corporation** Honda Motor Co., Ltd. Mazda Motor Corporation MITSUBISHI MOTORS CORPORATION Mitsubishi Electric Corporation Meijo University Mercedes-Benz Co., Ltd.

28 participants (31 May 2019)

Overview of the test equipment

Implementation Schedule:

*There is the possibility the field operational test will not take place during the Tokyo Olympics and Paralympics.

3. Status of the international collaborations

- ✓ Actively participating standardization activities.
 - ISO (TC204/WG3 and other WGs)
 - ISO17572-4 (Precise relative location referencing profile) will be published soon!
 - SIP-adus is planning to use this standard at the FOT next year with the concept of CRP (Common Reference Points).
 - OADF (Open AutoDrive Forum) meeting
 - ✓ participate as a Steering Committee member
 - SIP-adus is thinking about using some OADF members' standards at the FOT
- Presentations, discussions on worldwide
- $S_{SIP} \rightarrow ITS$ world congress, AVS, etc.

Thank you

snakajo@csis.u-tokyo.ac.jp