IMPACT ASSESSMENT FOR AUTOMATED DRIVING

SIP-ADUS WORKSHOP 2018

M VB 1971

TRAFFIC, ACCIDENTS AND TRAFFIC SAFETY. METHODS FOR SAFETY EVALUATION.

IMPACT ASSESSMENT. METHODOLOGY - ACCIDENT- VS. TRAFFIC-BASED APPROACH.

1) Accident-based

2) Traffic-based

TRAFFIC, ACCIDENTS AND TRAFFIC SAFETY. RESEARCH & HARMONIZATION EFFORTS IN SAFETY EVALUATION.

	Assessment Tools & Data	FOT & Data	Impact Assess- ment Method	Impact Assess- ment Tool
Objective	Analyse test tools for (the validation of) automated driving functions. Provide a common set of relevant situations (→ database).	Test of automated driving function on public roads. Collect data with the automated driving (AD) function.	Harmonize / standardize methods for prospective safety performance assessment by virtual simulation of ADAS & AD in order to overcome the issue of variety.	Provide a transparent software platform that enables the simulation of traffic situations to predict the real-world effectiveness of ADAS and AD.
Harmonization Activity	PEGASUS HAF	Pilot Driving Automation	DEARS	Open PASS
Research Activities	Adapt <mark>/</mark> :/Ve	Корннарти		SAFIR

IMPACT ASSESSMENT. METHODOLOGY - P.E.A.R.S.

- Representative assessment of active safety and automated driving requires harmonized methods.
- For simulation: methods, processes, and models for prospective assessment have to be harmonized.
- P.E.A.R.S. is an open working platform to create of a worldwide standard for the evaluation of systems within the pre-crash phase.
- WG A "Method, Models and Effectiveness Calculation"
- WG B "Round Robin Simulation"
- WG C "Data and Validation & Verification"
- WG D "ISO and External Communication"
- ISO Technical Report 21934-1: "Road vehicles Prospective safety performance assessment of pre-crash technology by virtual simulation -- Part 1: State-of-the-art and general method overview"

IMPACT ASSESSMENT. VIRTUAL ASSESSMENT.

IMPACT ASSESSMENT. VIRTUAL ASSESSMENT - SIMULATION FRAMEWORK OPENPASS.

- OpenPASS is a new software framework for simulation and evaluation of ADAS and automated driving
 - Join initiative of OEMs (Daimler, VW, Toyota and BMW), Suppliers (Bosch) and other partners (TÜV Süd, itk) with scope of harmonization of simulation tools
- Realistic traffic models and simulation → investigate interaction between different traffic participants
- Fast and efficient simulation \rightarrow consider a high number of situations
- Open source approach → generate trust and acceptance by authorities and public

(Eclipse project: sim@OpenPASS)

IMPACT ASSESSMENT. IDENTIFICATION OF TOP-SCENARIOS FOR AUTOMATED DRIVING.

RESULTS FROM EU RESEARCH PROJECT ADAPTIVE. OBSTACLE IN THE LANE.

bstacle the lane	Scenari Conditi	Scenario Conditions		Probability of remaining crash-free [-]					
	Parameter	Value	SCM Driver	ADF	Delta (absolute)	Delta (relative)	n w/o collision [9		
	Overall	-	29.9%	58.2%	-28.3%	-48,6%	Proportion of simulatio		
	Traffic	900 veh./h	30.9%	61.6%	-30.5%	-49,8%			
	volume	1200 ve h./h	28.9%	54.8%	-25.9%	-47,3%		l ł Sir	

The survival function

0 ir

RESULTS FROM RESEARCH PROJECT KO-HAF. "MINIMUM RISK MANOEUVRE".

- Analyse the consequences of two artificial Minimum Risk Manoeuvre (MRM) that consider only braking in the lane (moderate braking vs. strong braking).
- The effect of the MRM was simulated for 13 conditional variations in partial factorial design considering the following parameters: speed limit, traffic density and penetration rate of cooperative automated vehicles.

RESULTS FROM RESEARCH PROJECT KO-HAF. "MINIMUM RISK MANOEUVRE".

- Baseline w/o HAD & MRM ----- MRM w

- A lower deceleration while the MRM seems to be beneficial in terms of traffic safety benefits, however it requires a longer operation of the system.
- V2V communication shows a benefits in the simulation, however larger effects are observed at high penetration rates (>75 %).

*: The case with 100% penetration rate of the passenger cars with a cooperative HAD represents a pure theoretic case that is not realistic.

OUTLOOK: SAFETY IMPACT ASSESSMENT IN L3PILOT:

The safety impact assessment in L3Pilot aims at:

- Bring together the knowledge and method(s) from different projects and partners.
- Comprehensive assessment of driving scenarios with expected positive and negative effects.
- Consider information about personal attitude towards automated driving from annual survey (e.g. usage).
- Assess the effect for a larger region (aiming at Europe).
- Consider data from the real world pilot tests from different regions in Europe.

PROCESS AND ROLES. VISION OF ACTIVE SAFETY EVALUATION.

THANK YOU