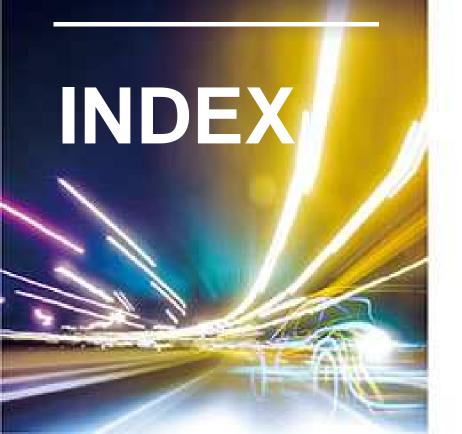


Connected Vehicles


Norifumi Ogawa

MAZDA Motor Corporation
SIP-adus International Cooperation WG

SIP-adus Workshop 2018

- 1. SIP adus Phase 1
 Activities' summary
- 2. SIP adus Phase 2 Activities' plan
- 3. Summary

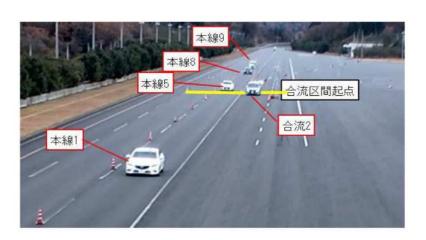
1. SIP adus Phase 1 Activities' summary

Outline of activities for connected vehicles

		2014FY	2015FY	2016FY	2017FY	2018FY
V	2V	Development of V2V,V2I Communication Technology Toward the Automated Driving Systems			Formulation of communication requirements for wireless	
V	21				communication for automated driving	
		Establishment of Technology for Providing Traffic Signal Information Towards the Realization of Automated Driving				
					ir	roviding dynamic nformation for Dynamic Map
V	2P	Development of Vehicle-to-pedestrian Communication Technology				
V	2N	N Utilization of Vehicle Information				nicle Probe

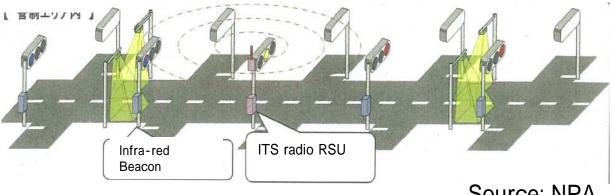
Development of V2V,V2I Communication Technology Toward the Automated Driving Systems

Aim


- -Clarify performance capability of 700MHz Band ITS radio communication for automated vehicles
- -Mutual communication by V2V, V2I for merging scenario on highway
- -Exchange of vehicle position information at intersection in interference circumstance.

Results

- -Communication capability on highway was confirmed with some protocol modification.
- -The influence of communication interference was small at the intersection.
- -Message sets and protocols for practical use is being studied.


Establishment of Technology for Providing Traffic Signal Information Towards the Realization of Automated Driving

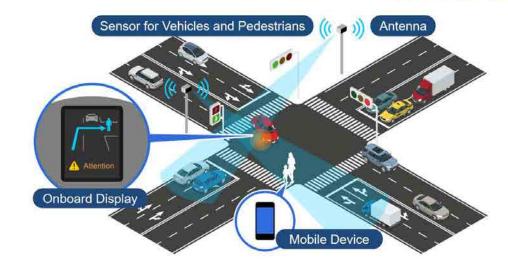
Aim

- -Providing signal information at the intersection for connected and automated vehicles
- -Improve accuracy by utilizing ITS radio communication in addition to optical beacons
- -Adding radio communication provide extensive and real-time signal information.

Results

-Validated the improvement accuracy of signal information provision on public roads

Source: NPA

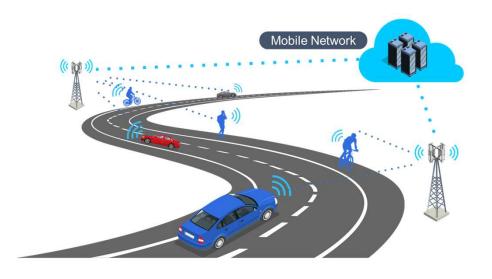

Development of Vehicle-to-pedestrian Communication Technology

Aim

- -For reduction of pedestrian accidents
- -Pedestrian's mobile device notifies pedestrians presence information to vehicles
- -Notifies approaching vehicle information to pedestrians
- -Pedestrian location accuracy improvement by GPS/GNSS/Dead Reckoning/Multi-pass rejection

Results

- -The pedestrian mobile device for FOT was developed.
- -Confirm pedestrian location accuracy at Odaiba
 - -Accuracy is confirmed from 1.6 m to 5.9 m
- -Risk determination technology was developed

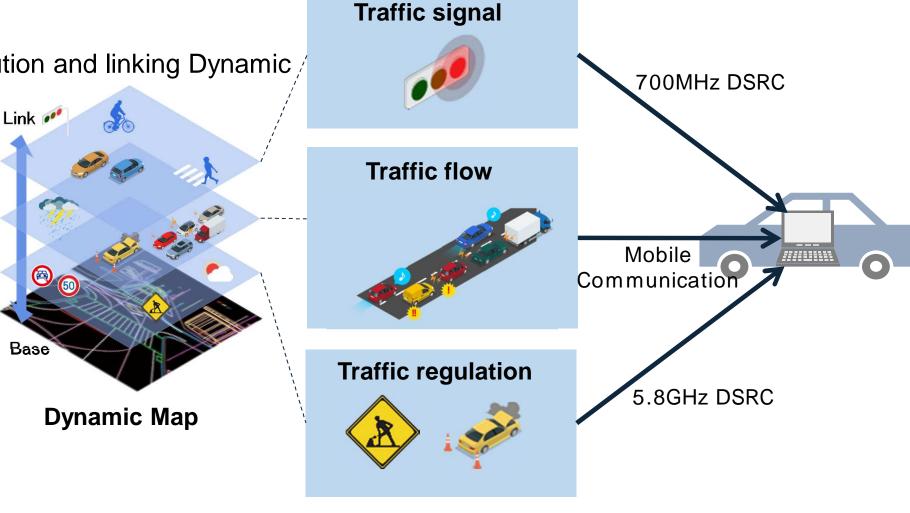

Utilization of Vehicle Probe Information

Aim

- -Collect semi-dynamic, semi-static information with real-time and wide-area
- -Obtaining traffic flow Information at lane level
- -Gathering information by the prove car

Result

- -Construction of probe cars information collection server
- -Linking to dynamic map



Providing dynamic information for Dynamic Map

Verification of data distribution and linking Dynamic /

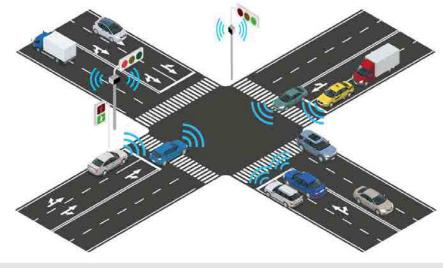
data to Dynamic map

Dynamic Data

2. SIP adus Phase 2 Activities' plan

Development of an environment for FOT based on SIP phase 1 results

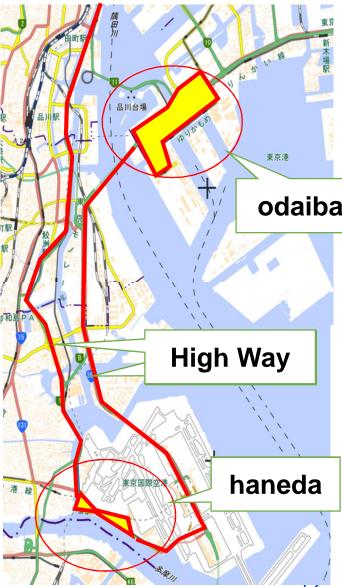
Outline


1. To support for merging on highway by V2I

- -The necessary information for merging on the main lane is acquired by the road side sensor and sent to the merging vehicle
- -Providing information on ETC gate operation status

2. To support passing through Intersection by signal information provision

-Signal color status, phase timing etc are provided by communication


Development for FOT Environment in Tokyo waterfront City

Traffic Signal Information

- -Seaside Sub-City Center (odaiba)
- -Haneda

Merging Support Information ETC Gate Status Information

-High Way

Source: GSI

JAMA is planning FOT and demonstration at Olympic and Paralympic in 2020

Odaiba Tokyo Waterfront City

Demonstration of level 4 automated driving on ordinary roads

High Way Haneda to Odaiba

Automated driving demonstration on highway

Haneda

Demonstration of level 2-4 on automated driving bus and owner car

Summary

- The basic communication technology of V2V, V2I, V2P and V2N for automated driving has been developed on SIP Phase 1.
- Capability of existing ITS communication technology to automated driving has been clarified.
- The effectiveness of several applications using communication technologies was confirmed.
- To clarify the issues of communication technology for applying to automated driving FOT will be conducted in SIP Phase 2
- FOT environment provide signal information provision, merging support on highway, and ETC gate operation status information in the Tokyo
 waterfront Odaiba, highway, Haneda area.

