Truck Automation in the U.S.

Steven E. Shladover, Sc.D.
University of California PATH Program (retired)
2018 SIP-adus Workshop
Tokyo, November 14, 2018

Why the interest in truck automation?

- Earlier adopters of automation than light-duty passenger vehicles, while the technology is still maturing and relatively expensive:
 - High-value vehicles, with high daily utilization and high operating costs produce faster return on investments that improve operational efficiency
 - More highly skilled drivers and fleet maintenance
 - Can provide useful service within limited Operational Design
 Domains constrained by technology immaturity
- For truck platooning: fuel cost savings from drag reduction
- For driverless Level 4 automation: expanding services now constrained by driver shortage, and reducing driver labor costs

Current U.S. Truck Automation Activities

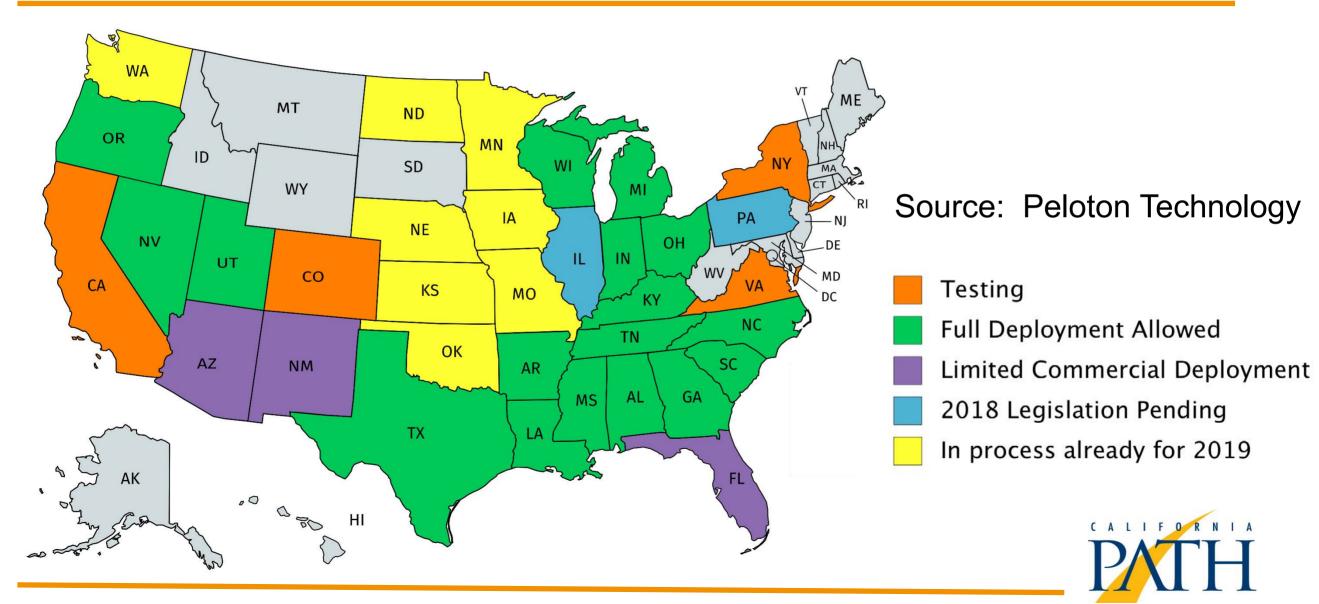
System development and testing work, not in full public operation yet

	Government	Industry
Truck platooning on highways (mainly Level 1 longitudinal control, limited Level 2)	0	0
Urban goods delivery, low speed (Level 4)		0
Interstate highway driving only (Level 4)		0
Special purpose, Level 4 low speed in closed sites (ports, warehouses)		0

Recent Truck Platooning Activities

- Research and development projects
 - Federal Highway Administration, Exploratory Advanced Research
 - Caltrans/PATH/Volvo/Cambridge Systematics
 - Auburn University/Peloton/Peterbilt
 - Department of Energy, SMART Mobility Program
 - PATH/Volvo
 - Texas DOT/ Texas Transportation Institute
 - U.S. Army TARDEC
- Commercial product development and demonstrations
 - Peloton Technology
 - Volvo/Federal Express demonstration
 - Freightliner (Daimler) trucks

3-Truck PATH/Volvo Platoon Demo for U.S. DOT in Public Traffic on I-66 Near Washington DC



New U.S. Government Plans for Truck Platooning

- Competition for field operational test to collect data on usage by truck fleets in regular operation (field testing to start ~2020)
- Research projects on:
 - Human factors issues for truck drivers and drivers of nearby vehicles
 - Truck maintenance and inspection needs
 - Determining safe following distances
 - Cybersecurity
 - Brake inspection policies and procedures
 - Hazard analyses
 - Extension from Level 1 to Level 2 automation

States Adjusting Regulations on Minimum Following Distance to Permit Truck Platooning

Automation of Low-Speed Urban Goods Delivery

- Level 4 automation in development to try to eliminate drivers for deliveries of small packages by light-duty vehicles
 - Modifications of existing vehicles
 - New purpose-built vehicles
 - Some very small vehicles ("beer coolers on wheels")
- Recent interest among start-up companies led California to request inputs on definition of applicable regulations
- Companies include:
 - Nuro Robotics
 - AutoX Technologies
 - Ford

Prototype Local Package Delivery Vehicles

Nuro Robotics

AutoX

Ford pizza delivery

Prototype Delivery Robots (mainly for sidewalks)

Marble (\$10 M investment)

Utrasound

Carry up to 30ths

TABLET
 Aremation ()
 Configuration
 Munituring

SENSOR FOR

NAVIGATION

Robby Technologies (\$2 M investment)

Dispatch.ai (\$2 M investment)

Unsupervised.ai (doorstep delivery)

Level 4 Automation of Highway Driving

- Industry efforts to develop trucks capable of driverless operation on some specific limited-access highways, generally:
 - Low-density rural areas for long hauls in light traffic
 - Driving between depots at freeway entrances/exits (not on local streets) – or remotely driven when off highway (Starsky)
 - Remote supervision by humans (varying levels of intervention)
 - Testing prototypes on public roads with safety drivers supervising
- Active companies include:
 - Embark (California Texas testing)
 - TUSimple (Phoenix-Tucson highway testing and China port testing)
 - Starsky Robotics (Florida testing)
 - Waymo (Atlanta testing)

Level 4 Long-Haul Truck Prototypes

Special Purpose Level 4 Truck Automation in Restricted Sites

- Low-profile activities, very little public information
- Extensions of factory and warehouse automation technologies for low speeds in protected environments:
 - Short-distance, low-speed trailer or shipping container movements at warehouse and terminal yards
 - Airport terminal apron support vehicles
 - Trash collection
 - Snow removal

Summary of U.S. Truck Automation Status

- Emphasis of public agency R&D programs and major truck manufacturers on truck platooning (Level 1 automation)
 - Near-term opportunities within existing truck fleet operations
 - Risk of setback if DSRC communications are destroyed in current political environment
- Recent growth of interest in non-traditional approaches using Level 4 automation to <u>replace</u> drivers within narrowly-defined Operational Design Domains, and with new business models
 - Small urban pickup/delivery vehicle services
 - Highway-only driving between depots (long-haul, rural)
 - Speculative, disruptive start-up activities