

Assessment of automated driving to design infrastructure-assisted driving at transition areas

Dr. Jaap Vreeswijk, MAP traffic management, the Netherlands

5th SIP-adus Workshop 2018 Tokyo, Japan, November 13-15, 2018 Impact Assessment

Operational Design Domain (ODD)

14/11/2018

ODD >> ToC / MRM >> Transition areas (TAs)

Tom Alkim, Rijkswaterstaat, 2017

14/11/2018

Always & All conditions

5th SIP-adus Workshop 2018

- 3 -

ToC and MRM process (deactivations)

MRM minimum risk condition = stop or park safely

14/11/2018

ODD >> ToC / MRM >> TAs >> capacity & flow problems

Xiao, L., Wang, M., Schakel, W., & van Arem, B. (2018). Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks. Transportation Research Part C: Emerging Technologies, 96, 380-397.

14/11/2018

When, where, why? permanent - transient static/dynamic - highly dynamic

14/11/2018

What we know from the field

Favaro et al. (2017), Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations, Accident Analysis & Prevention, Vol. 110, pp. 136-148

14/11/2018

I2V infrastructure support

Vehicle capabilities (A)	• B + C = A	ODD: OK
x Geographical domain (B) x	• B + C ≠ A	ODD: NOK
Traffic & situational environment (C)	• B + C = A + ?	ODD: OK?
	? = digital con	nected traffic management
ODD		

14/11/2018

Project overview

- TransAID (ART-05)
- Transition Areas for Infrastructure-Assisted Driving
- 01-09-2017 ~ 31-08-2020
- Budget: EUR 3.836.353,75
- Seven partners from 6 countries: DE, UK, BE, NL, EL, ES
- Website: <u>www.transaid.eu</u>

14/11/2018

5th SIP-adus Workshop 2018

- 9 -

Identifying needs

• Vehicle logic:

– Sense and build environmental awareness

- Ability to determine action(s)
- Ability to perform action(s)

Identifying I2V / TM support measures

- Vehicle logic:
 - Sense and build environmental awareness
 - Situational support: provide information
 - Ability to determine action(s)
 - Operational support: provide an (alternative) action
 - Ability to perform action(s)
 - Tactical support: arrange favourable conditions

• Service 1: Prevent ToC/MRM by providing vehicle path information

• Service 2: Prevent ToC/MRM by providing speed, headway and/or lane advice

• Service 3: Prevent ToC/MRM by traffic separation

• Service 4: Manage MRM by guidance to safe spot

• Service 5: Distribute ToC/MRM by scheduling ToCs

no automated driving	no automated driving		

Simulation task

- Step 1: determine baseline situation.
- What is the impact of ToC / MRM without traffic management measures?
- SUMO simulation software (which includes PHEMlite emission model).
- ACC model adopted from previous studies^{1,2}, with few modifications.
- Parametrised SUMO's default lane change model.

1. Xiao, L., Wang, M., & van Arem, B. (2017). Realistic Car-Following Models for Microscopic Simulation of Adaptive and Cooperative Adaptive Cruise Control Vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2623, 1–9. https://doi.org/10.3141/2623-01

2. Liu, H., Kan, X., Wei, D., Chou, F.-C., Shladover, S. E., & Lu, X.-Y. (2018). Using Cooperative Adaptive Cruise Control (CACC) to Form High-Performance Vehicle Streams - Microscopic Traffic Modeling (FHWA Exploratory Advanced Research Program No. Cooperative Agreement No. DTFH61-13-H-00013). University of California, Berkeley: California PATH Program.

ToC model implementation

- Definition reduced driver performance: random decline in awareness causing 'perception errors' (mainly speed and headway) with certain awareness recovery rate. MRM full stop not included in this project iteration cycle.
- Assumption ToC frequency: 75% at predefined locations in each scenario.

Simulation setup

- Traffic demand: LoS A, B & C
- Vehicle Mix :
 - -70% manual, 15% partial AD, 15% high AD
 - 50% manual, 25% partial AD, 25% high AD
 - 20% manual, 40% partial AD, 40% high AD
- Light vehicles only and no connectivity.

Driver model parameters

Driver Model	Parameter Name	SUMO Parameter	
ACC (Longitudinal Motion)	Desired time headway	tau	
Sub-lane (Lateral Motion)	Desired longitudinal gaps	lcAssertive	
	Driver response time	responseTime	
Тос/МРМ	Post ToC driver performance	initialAwareness	
	ToC likelihood (internal and external factors)	responseTime timeTillMRM	

- For each parameter, classification:
 - Value = high, moderate, low
 - With behaviour = conservative, moderate, aggressive
 - And effect on safety and efficiency: negative, neutral, positive

Five schemes to test a range of behaviours

Parametrization Scheme	ACC Desired time headway	Lane Change Desired longitudinal gaps	ToC/MRM Driver response time	ToC/MRM Post ToC driver performance	ToC/MRM MRM likelihood
Pessimistic Efficiency (PE)	Large	Large	Long	Low	High
Pessimistic Safety (PS)	Small	Short	Long	Low	High
Moderate Safety and Efficiency (MSE)	Moderate	Moderate	Moderate	Moderate	Moderate
Optimistic Efficiency (OE)	Small	Short	Short	High	Low
Optimistic Safety (OS)	Large	Large	Short	High	Low

14/11/2018

Simulation setup summary

- 3 demand levels
- 3 vehicle mixes
- 5 parameter schemes
- 5 networks
- = 225 scenarios

KPI Name

Average network speed

Space-mean speed

Total Number of Lane Changes

Time-to-collision (TTC)

CO₂ emissions (gr)/km

Results (example)

https://www.transaid.eu/wp-content/uploads/2017/Deliverables/WP3/TransAID_D3.1_Modelling-simulation-and-assessment-of-vehicle-automations.pdf

Main findings

- Work provided first theoretical understanding, especially of the spectrum.
- By comparison of schemes, lane change behaviour is the dominant factor.
- Decrease of safety with increase of AD (conservative driving causes inability to merge, thereby sudden braking).
- Impact of ToC/MRM most disadvantageous at lane drop scenario, therefore merge and/or lane advice measures seem to be promising.
- Schemes with similar results are those with similar driver model settings.
- As such, ToC/MRM in current form has little impact on traffic operations.
- (C)ACC and LC models require further calibration (esp. for selected situations).
- ToC model needs to be more situational aware, thereby more realistic.

14/11/2018

Future work

- Driver model calibration.
- Study time-space diagrams.
- ToC model enhancement: dynamic rules for ToC activation.
- Add effects of connectivity.
- Add other networks.
- Configure traffic management measures.
- Include simulation of wireless communication.
- Last but not least: data from AD field observations and tests is needed.

14/11/2018

EU collaboration - challenges

Road infrastructure support levels

Mutual work items

- Role of traffic management
- I2V communication
- City authority involvement
- Modelling and simulation

TRAFFIC MANAGEMENT

I2V TM at Transition Areas

Automation-readiness of infrastructure

Traffic control and I2V negotiation

Harmonise simulation activities?

- Driver model parameters
- Vehicle types & mix
- Networks
- KPI's

5th SIP-adus Workshop 2018

14/11

Thank you for listening! Are there any questions?

Assessment of automated driving to design infrastructure-assisted driving at transition areas

Dr. Jaap Vreeswijk, *MAP traffic management,* the Netherlands jaap.Vreeswijk@maptm.nl | +31 6 4164 7985

> 5th SIP-adus Workshop 2018 Tokyo, Japan, November 13-15, 2018 Impact Assessment

