Next Generation Transport Session

International standardization of Low-Speed Automated Driving systems Current Status

ISO/TC204/WG14 Japanese mirror committee Last-mile SWG, JSAE Kazuki TAKAHASHI (Yamaha motor Co., Ltd.)

Last-mile transport system and LSAD system

Low-Speed Automated Driving system

- "Last-mile" = "Last-one-mile"
 - the last interval where the service reach a customer
 - short distance between a nearest transportation hub and the final destination railway stations, bus depots etc. own home etc.
- "Last-mile" is not directly equal to "LSAD system" however
- > "LSAD system" is expected to play a big role as a Last-mile transportation system for its specific functions and tasks

Feature of the "Last-mile transport system"

As a Service;

- ✓ Need to operate in an area where conventional public transportations are generally not available (cf. Zone 30)
- ✓ Not a mass transportation
- ✓ Priority on flexibility for the users' (passengers') personal needs, rather than efficiency and speed
- ✓ On-demand style for small number of passengers

As a vehicle system;

- ✓ Finite operational routes, then limited amount of map information for automated driving
- ✓ No need to operate with high-speed
- ✓ Short duration for one trip riding time

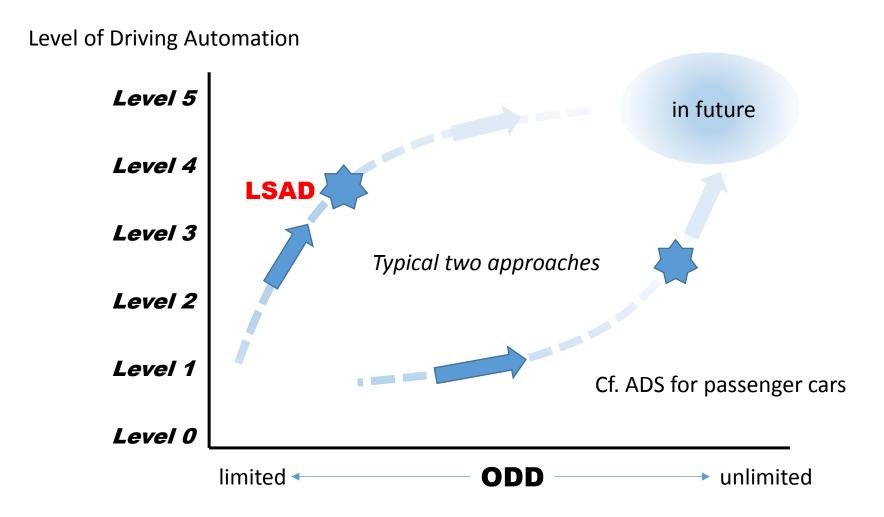
etc.

Summary of levels of driving automation(SAE-J3016:SEP2016)

		DDT		DDT	DDT fallback
Level	Name	Sustained lateral and longitudinal vehicle motion control	OEDR		
Driver perf	orms part or all of the DDT				
0	No Driving Automation	Driver	Driver	Driver	n/a
1	Driver Assistance	Driver and System	Driver	Driver	Limited
2	Partial Driving Automation	rtial Driving Automation System		Driver	Limited
ADS ("Sys	tem") performs the entire DDT (wh	nile engaged)			
3	Conditional Driving Automation	System	System	Fallback-ready user (becomes the driver during fallback)	Limited
4	High Driving Automation	System	System	System	Limited
5	Full Driving Automation	System	System	System	Unlimited

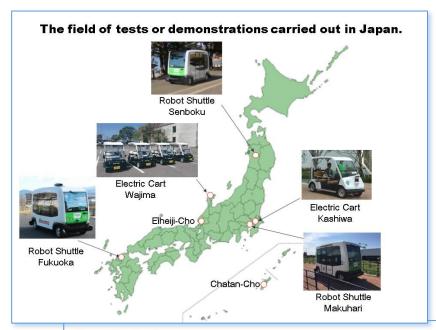
ADS: Automated Driving System ODD: Operational Design Domain

DDT: Dynamic Driving Task


OEDR: Object and Event Detection and Response

ISO/SAE new joint project [ISO/SAE NP PAS 22736] has approved (Aug. 2017), and started (Oct.2017)

Intelligent transport systems -- Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (revision of SAE-J3016)


LSAD systems

Aiming at earlier realization of highly automated driving system in limited ODD

(ODD may include geographic, roadway, environmental, traffic, speed, and/or temporal limitations; SAE J3016)

Last-mile transportation system, case examples in Japan

METI & MLIT Project - Last-mile "R&D and demonstration project on smart mobility systems" 2016: Plan & Development 2017: Evaluation with relevant ministries and agencies. 2018: Demonstrations. Demonstration for social implementation of the last-mile mobility system by automated and connected vehicles in dedicated zone. (Near Home) Selected test place for LSAV · Wajima-city, Ishikawa-Pref. · Eiheiji-cho, Fukui-Pref. · Chatan-cho, Okinawa-Pref. **Project description** Examination of feasible business model of last-mile mobility system Demonstration and development of required technology for last-mile mobility system Discussion on institutional approach of technology and Candidate Vehicles business aspects with relevant ministries

Since around 2013, many local trials have been executed for social implementation of last-mile transportation in Japan

a topic;
"Michi-no-Eki" by MLIT,NILIM
"Ashikita Dekopon" in Kumamoto Pref.
Oct.1st~Oct.7th, 2017.

METI: Ministry of Economy, Trade and Industry

MLIT: Ministry of Land, Infrastructure Transport and Tourism
NILIM: National Institute for Land and Infrastructure Management

Last-mile transportation system, other examples

Shuttle and pod with LSAD system

DE InnoZ (source: https://www.innoz.de/en/innoz-living-lab-connected-mobility)

UK Autodrive (source: http://www.ukautodrive.com/downloads/)

UK GATEway (source: https://gateway-project.org.uk/gallery/)

FR NAVYA (source: http://navya.tech/)

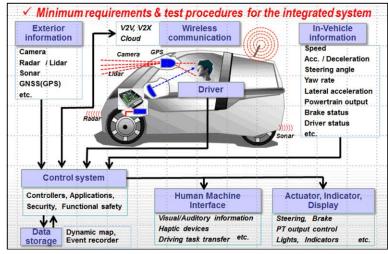
International standardization activity for Driving Automation systems

(International Organization for Standardization)

TC22 Road Vehicles

TC204 Intelligent Transport Systems

- WG1 Architecture [US]
- WG3 ITS database technology [JP]
- WG4 Automatic vehicle and equipment identification [NO]
 - WG5 Fee and toll collection [SE]
 - WG7 General fleet management and commercial/freight [CA]
 - WG8 Public transport/emergency [US]
 - WG9 Integrated transport information. management and control [AU]
 - WG10 Traveler information systems[GB]


WG14 Vehicle/roadway warning and control systems [JP]

WG16 Communications [US]

- WG17 Nomadic Devices in ITS systems [KR]

WG18 Cooperative systems [DE]

[*] Convener

Source: ISO/TC204/WG14

in Japan JISC

(Japanese Industrial Standards Committee)

JSAE: Society of Automotive Engineers of Japan, Inc.

ISO standardization project stages

				Working track	
Stage	Document name		Accelerated 2 years	Standard 3years	Extended 4years
00 preliminary	Preliminary work item	PWI			
10 proposal	New work item proposal	NP			
20 preparatory	Working draft	WD		12 months	12 months
30 committee	Committee draft	CD	+ 6 months	+6 months	+12 months
40 enquiry	Draft International Standard	DIS	+12 months	+12 months	+19 months
50 approval	Final draft International Standard	FDIS	+6 months	+6 months	+5 months
60 publication	International Standard	IS	Total 24 months	Total 36 months	Total 48 months

- Timer for IS working track starts when NP is approved.
- For NP approval, 2/3 in favor and 5 countries (4 countries, if P members \leq 16) at least, are necessary from P members (TC204 has 28 P members).

Published

ISO/TS 15624:2001 TIWS	Traffic Impediment Warning Systems
ISO 17387:2008 LCDAS	Lane change decision aid systems
ISO 22178:2009 LSF	Low Speed Following systems
ISO 15622:2010 ACC	Adaptive Cruise Control systems
ISO 17386:2010 MALSO	Maneuvering Aids for Low Speed Operation
ISO 22840:2010 ERBA	Extended range backing aid systems
ISO 22839:2013 FVCMS	Forward vehicle collision mitigation systems
ISO 15623:2013 FVCWS	Forward vehicle collision warning systems
ISO 11270:2014 LKAS	Lane keeping assistance systems
ISO 26684:2015 CIWS	Cooperative intersection signal information and violation warning systems
ISO 11067:2015 CSWS	Curve speed warning systems
ISO 18682:2016 HNS	External hazard detection and notification systems
ISO 16787:2016 APS	Assisted Parking Systems
ISO 17361:2017 LDWS	Lane departure warning systems
ISO/TR 20545:2017 RoVAS	Report on standardization for vehicle automated driving systems

Current working items

ISO/FDIS 16787 Ed2 APS	Assisted parking system
ISO/FDIS 19237 PDCMS	Pedestrian detection and collision mitigation systems
ISO/DIS 20035 CACC	Cooperative adaptive cruise control systems
ISO/DIS 15622 Ed3 ACC	Adaptive cruise control systems
ISO/DIS 19638 RBDPS	Road Boundary Departure Prevention Systems
ISO/DIS 21717 PADS	Partially automated in-lane driving systems
ISO/CD 20900 PAPS	Partially automated parking systems
ISO/CD 20901 EEBL	Emergency electronic brake light systems
ISO/WD 22078 BDCMS	Bicyclist detection and collision mitigation systems
ISO/WD 21202 PALS	Partially Automated Lane Change Systems
ISO/SAE NP PAS 22736	Taxonomy and Definitions for Terms Related to Driving Automation Systems

Preliminary working items

ISO/PWI 22084	TINS	Traffic incident notification systems
ISO/PWI 22737	LSAD	Low-speed automated driving systems for limited operational design domain
ISO/PWI	AVPS	Automated Valet Parking systems
ISO/PWI	CALC	Collision avoidance in-lane lateral control systems
ISO/PWI	V2VICWS	Vehicle-to-vehicle intersection collision warning systems
ISO/PWI	FSV2V-1	Functional safety for vehicle-to-vehicle cooperative functions (FSV2V) - Part 1: Plate

^{*} additionally four more PWIs were registered after the 48th WG14 in San Antonio (Oct.,2017)

LSAD is started in WG14 as PWI

ISO/PWI 22737 (Current stage: 00.00)

Intelligent transport systems -- Low-speed automated driving systems for limited operational design domain (LSAD) -- Performance requirements, system requirements and performance test procedures

Introduced in TC204/WG14, Oct. 2016@Auckland Approved & registered as a PWI at TC204/WG14, Apr. 2017@Paris Project leader: Khastgir, Siddartha Mr. (BSI Experts)

PWI supported by GBR, USA, KOR, HUN, CAN, JPN

Source: presentation slides by UK in ISO/TC204/WG14@Auckland (Oct. 2016), Paris (Apr. 2017)

The draft scope of proposed LSAD standard and its challenges

The draft scope (extraction) of the preliminary working item (ISO/PWI 22737)

Scope (extraction)

This international standard for Low-Speed Automated Driving (LSAD) systems addresses low speed road vehicles being operated in Limited Operational Design Domains. This standard contains the minimum performance requirements, system requirements and performance test procedures.

•••

LSAD system are intended to be used on either restricted access roadways (public or private) or pedestrian / bicycle pathways. LSAD systems are not intended to be used on freeways or highways where non-motorized vehicles and pedestrians are prohibited. LSAD systems may be used on pre-determined routes.

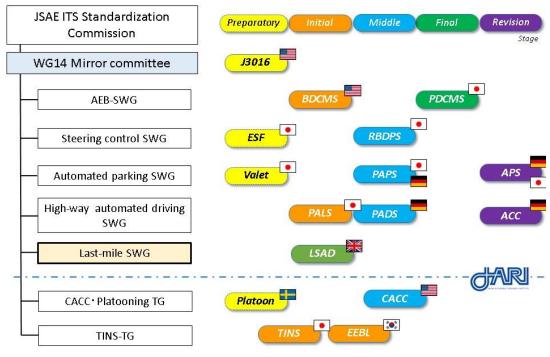
•••

Latest version after the WG14 meeting in Oct. 2017

Major points to be discussed;

- Levels of driving automation of LSAD and its specific minimum risk maneuver
- Interpretation of "Low-speed", and its corresponding obstacle detection capability
- Limitation of ODD for acceptable LSAD operation, e.g. low-speed, restricted path, . . .
- Clear definition of "Supervisor" and "Dispatcher" and their role
- Minimum performance requirements and its test procedures

etc.


Japanese framework for the PWI, and basic policy for it

Japanese position for PWI 22737 (LSAD)

Actively contribute toward useful standard

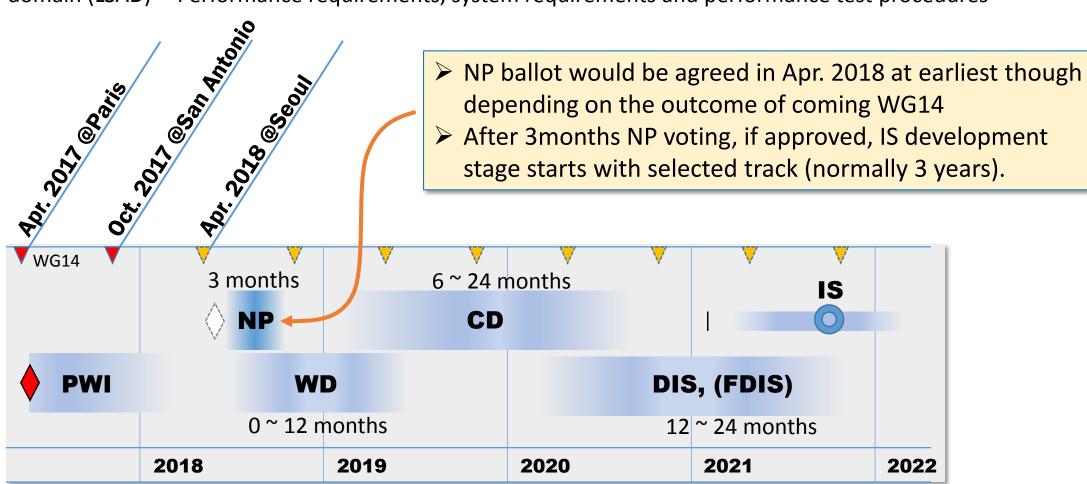
"Last-mile SWG" has been organized under the WG14 mirror committee

SWG/TG Framework 2017 of WG14 Mirror Committee in JP

Issues to be clarified for LSAD to be socially implemented

- Low-speed operation
- Transportation service business, rather than owner's car
- "Limited" ODD for enabling higher ADS (SAE Lv.4)

Continuous monitoring WP29


Brain-storm discussion of vehicle category including Pod and Shuttle type Automated Vehicle has started

Expected project schedule for the PWI

ISO/PWI 22737

Intelligent transport systems -- Low-speed automated driving systems for limited operational design domain (LSAD) -- Performance requirements, system requirements and performance test procedures

Conclusion

- PWI stage of LSAD international standard has officially started in ISO/TC204/WG14.
- NP ballot would be opened soon (2018?) to get approval by TC204.
- At least 5 countries who send expert(s) are necessary to start the ISO project stage.
- Japan will actively contribute to the Work Item in order to make it a useful standard.
- Your attention to the progress of this item is kindly requested if you have interest on it.

Thank you