SIP-adus Workshop 2017 SIP-adus Report Session, Nov. 15, 2017

Study on analysis of social and industrial aspects involved in the effort to develop more advanced automated driving systems and ensure their widespread use

Koichi Sakai

Institute of Industrial Science, the University of Tokyo

- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

Background to study

- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

Background to study

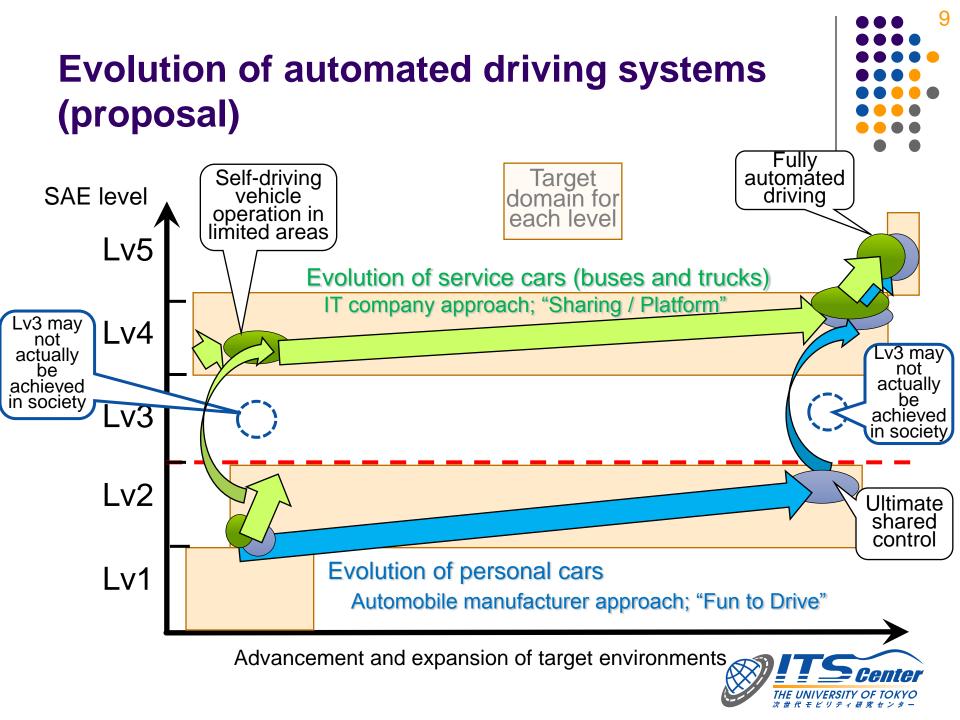
- The following will be needed in order to develop more advanced automated driving systems and ensure their widespread use:
 - **Clarification of the risks** that result from the domestic and international impact and change on society and industry
 - Formulation of measures to mitigate impact and risks and scenarios from a long-term perspective
 - **Greater understanding** of automated driving systems on the part of the general public
 - Clarification of the impact on society and industry and basic study for the purpose of formulating medium- and long-term scenarios
 - Study on an open study organization with industry, academic and government collaboration

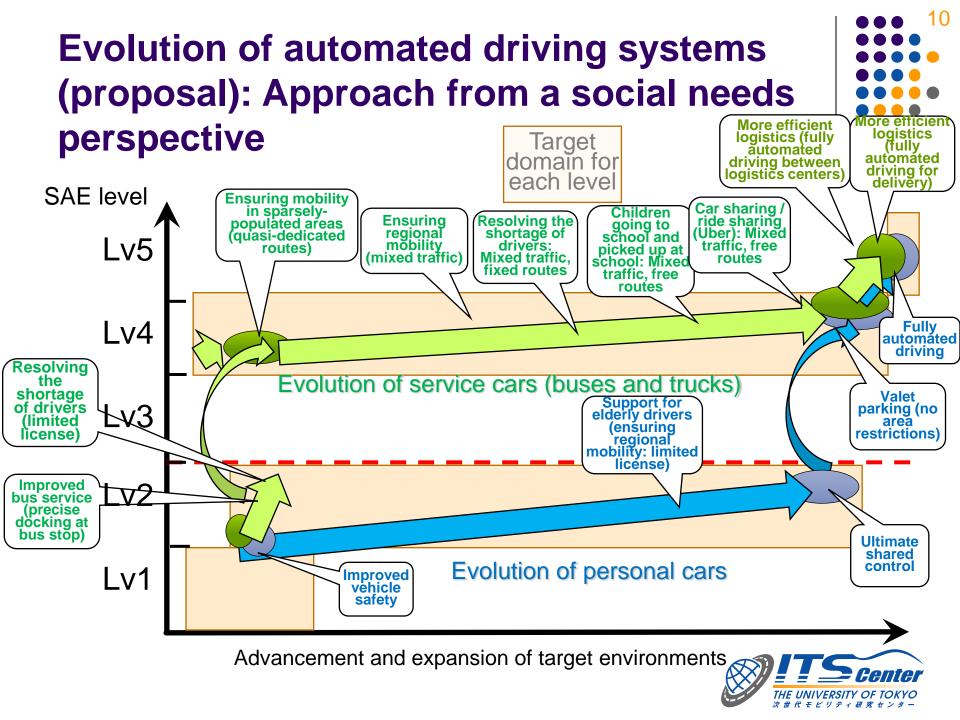
- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

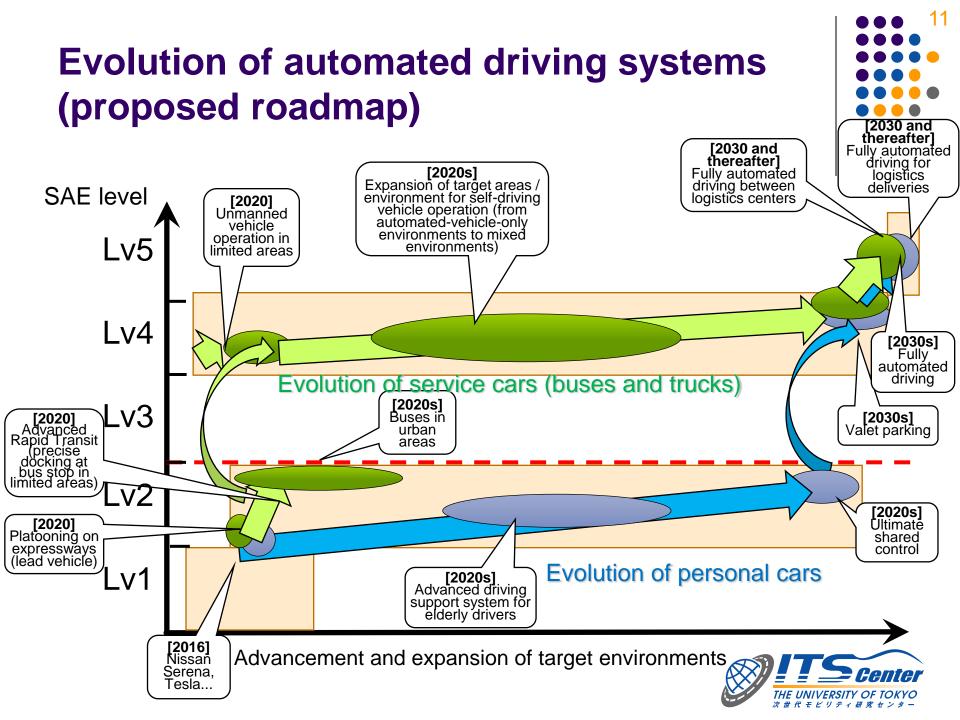
Establishment of Study Team

Name	Affiliation	Speciality
Masato Itohisa	Hosei University	Technology management
Takeyoshi Imai	Hosei University Graduate School of Law	Criminal law
Keisuke Uehara	Keio University	Information and communications
OTakashi Oguchi	The University of Tokyo	Traffic management and control
Shusuke Kakiuchi	The University of Tokyo	Civil procedure law
Yuto Kitamura	The University of Tokyo	Education
Yasuhiro Shiomi	Ritsumeikan University	Traffic engineering
Naoki Suganuma	Kanazawa University	Robotics engineering
Akihiro Nakamura	Yokohama City University	Public economics
Akinori Morimoto	Waseda University	Urban planning
Pongsathorn Raksincharoensak	Tokyo University of Agriculture and Technology	Mechanical dynamics control
Goro Yamazaki	Osaka University	Cultural anthropology

O: Chairman


- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion




Evolution of automated driving systems

- 8
- Automated driving systems will evolve at two levels (Lv2 and Lv4).
 - In practice, Lv3 passengers will be assigned the same responsibilities as drivers under current law.
 - At Lv3, **passengers must become drivers if needed**. Safety cannot be ensured by having the automated driving system replace human beings even in situations that cannot be handled by the most advanced technology.
 - Most of social needs are classified as Lv2 and Lv4.
 - Lv3 might exist if the level (skill) of the driver were high, but in general drivers will not like Lv3 vehicles.
- → Discussions of the impact of automated driving systems on society and industry should focus primarily on Lv2 and Lv4.

- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

Classification of anticipated impacts

Impact classification based on a two-way evolution

$\bullet \bullet \bullet$	13

	Lv2 advancement	Lv4	Common items
"People flow" personal vehicles	 Reduced traffic accidents (elderly drivers) (+) Support for vulnerable road users (elderly drivers, etc.) (+) Impact on (the easing of) the licensing system (+) etc. 	-	 Enjoyment of mobility (+), etc.
"People flow" service vehicles (buses)	 Resolution of driver shortage (limited license) (+) Improved bus service (precise location stop control) (+) 	 Support for vulnerable road users (elderly drivers, etc.) (+) Regional revitalization, regional stimulation, measures to mitigate depopulation (+) Impact on urban and rural systems, national land planning and urban design (+, -) Impact on the concept of public and cost burden (+, -) Impact on social benefit and imposition of additional obligation (+, -) 	 Reduced transit costs (+) Resolution of driver shortage (+) Enjoyment of mobility (+), etc.

Classification of anticipated impacts

Impact classification based on a two-way evolution

	Lv2 advancement	Lv4	Common items
Logistics service vehicles (trucks)	 Resolution of driver shortage (limited license) (+) Reduction of the manual driving load on drivers (+) etc. 	 Reduction of logistics and distribution costs (+) Resolution of driver shortage (limited license) (+) etc. 	 Reduction of logistics and distribution costs (+) Impact on transit of other vehicles (-) Impact of platooning formation and disbanding (construction of new road infrastructure (+,-) etc.

Classification of anticipated impacts

Impact classification based on a two-way evolution

	Lv2 advancement	Lv4	Common items
Common items		 Impact on social acceptance and ethical philosophy (+,-) Impact on legal system (+,-) New insurance needs (+) Impact on infrastructure construction and maintenance level (+,-) Impact on new infrastructure construction (highly accurate maps) (+,-) Additional driving vehicle-kilometers, congestion and environmental load (-) Impact on taxes, charges, beneficiary burden etc. (+,-) Impact on medical and nursing care, health and welfare (+) Change in activities of people during transit (+) Impact on new licensing systems (-) Impact on automotive industry and related industries (+,-) etc. 	 Cyber attack and terrorism risk (-) Reduction of environmental load (+,-) etc.

Impact on the automotive industry

- 16
- At the initial stages of dissemination, automated vehicles will play a major role in public transport and sharing services.
 - High purchase cost and need to ensure high technical capabilities for maintenance and inspection
 - Dissemination of automated vehicles will coincide with the expansion of the market for sharing services
- Progress of sharing services → shift from "Fun to Drive" to "Fun to Move"
 → <u>The rulers of the service platforms that link customers with mobility</u> services will be the rulers of the new ecosystem.
 - Example: Google provides the OS (Android) free of charge to create end manufacturer partners, accelerating the spread of the service platform (Google Play)
- As the products become more complex, the industrial configuration evolves from a closed integrated type (vertically integrated) to an open modular type (horizontally distributed).
 - Open modular worlds make it easy for Winner-Take-All default players to be born in each module.
 - Example: In the IT industry, Intel, Microsoft, Google, Facebook etc.
 - Companies that can become default player candidates are present in automated driving systems as well.

Considerations and items for study regarding anticipated impact

Preconditions for impact

	Lv2 advancement	Lv4	Common items
"People flow" personal vehicles	 Determination of specific Lv2 technologies needed to deal with traffic accidents involving elderly drivers Determination of specific Lv2 technologies needed to support limited mobility elderly drivers 		 Organization of conditions needed to make mobility enjoyable
"People flow" service vehicles (buses)	 Organization of conditions that will lead to improved bus service etc. 	 Determination of specific Lv4 technologies needed to support vulnerable road users and analysis of cost structure Determination of specific Lv4 technologies needed for regional revitalization, regional stimulation and measures to mitigate depopulation, and analysis of cost structure (including conditions for infrastructure construction) Determination of specific impact on urban and rural systems, national land planning and urban design Organization of impact on the concept of public and cost burden Careful analysis of social benefit and analysis of costs arising from imposition of additional obligation 	 Analysis of transit cost structure Organization of conditions needed to make mobility enjoyable

Considerations and items for study regarding anticipated impact

Preconditions for impact

	Lv2 advancement	Lv4	Common items
Logistics service vehicles (trucks)	 Organization of conditions that will lead to reduced driver burden 	 Analysis of cost structure for logistics and distribution overall Conditions that will lead to easing of driver shortage problem (ranking under Labor Standards Law) etc. 	 Analysis of cost structure for logistics overall Organization of impact on other vehicles and conditions needed to minimize adverse impact Organization of impact of

THE UNIVERSITY OF TOKYO 次 世 代 モ ビ リ ティ 研 究 セ ン タ ー

Considerations and items for study regarding anticipated impact

19

次世代モビリティ研究センター

Preconditions for impact

	Lv2 advancement	Lv4	Common items
Common items	• Organization of (the easing of) the licensing system	 Infrastructure (highly accurate maps etc.) and cost analysis for upgrades, etc. Analysis of impact of additional driving vehicle-kilometers, congestion and environmental load Analysis of impact on taxes, charges, beneficiary burden etc. Analysis of impact on medical and nursing care, health and welfare Analysis of change in activities of people during transit Analysis of impact on traffic education Study of need for new licensing categories Impact on automotive industry and related industries etc. 	 Analysis of effect of cyber attack and terrorism risk Analysis of effect on reduction of environmental load etc.
			THE UNIVERSITY OF TOKYO

Verification and evaluation of impact on society and industry

- Proposal for study of (policy) key performance indicators (KPI) and follow up items for evolution /practical application of automated driving systems
 - KPI to show the progress in the evolution/practical application of automated driving systems
 - Status of technology dissemination (Lv2 and Lv4) (Example: <u>number of vehicles</u> sold, etc.)
 - Status of technology advancement and expansion of target environments (Example: <u>number of revisions and additions to relevant laws and standards</u> with the aim of disseminating automated driving)
 - Status of practical application of services (platooning, the "last mile" etc.) (Example: Number of locations where practical application of services has occurred)
 - Follow-up items to ensure that evolution/practical application is significant
 - Increase in social acceptance (Example: <u>Number of field testing and practical</u> <u>application locations</u>, etc.)
 - Increased use of sharing services (Example: Number of sharing service users, use vehicles etc.)
 - Achievement or creation of new services (Example: <u>Number of companies</u> engaged in new business, etc.)
 - State of change in automobile manufacturing (Example: shift to a horizontally distributed model, etc.)

- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems

Proposed future study

- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

Proposed future study

Proposed study content for the next 2 - 3 years

Social acceptance

- Promotion of social acceptance of the risks
- Relationship with other drivers, pedestrians, and cyclists (HMI in the broad sense)
- Customer acceptance
- Building up achievements to publicize the system, and strategy for advertisement and education to the general public
- Study on coordination with introduction of public funds and market principles to introduce and operate automated driving systems
 - Redefinition of public transport

Relationship to urban design

Change in residential locations due to change in the cost structure of mobility services

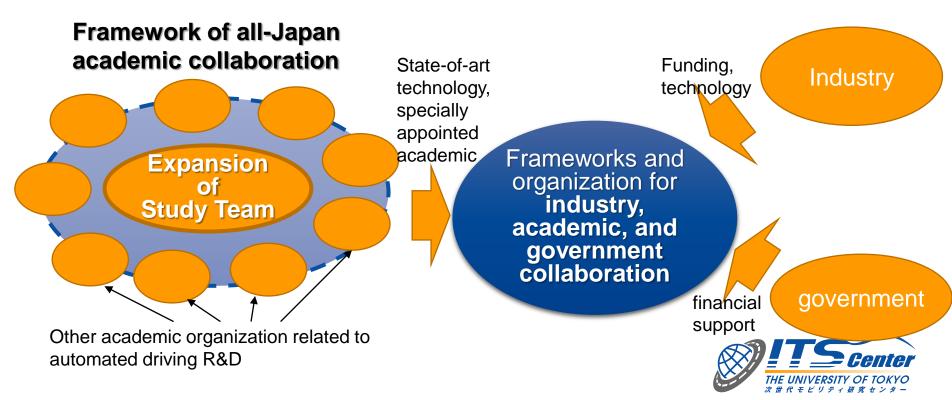
Creation of markets and need for marketing

- Verification of business model (study of business ecosystem)
- Matching the needs of users and social system and the seeds of technologies

International cooperation to achieve international mutual understanding

Proposed future study

- Proposed content to be executed over the medium- to long-term
 - Study of the need for new license categories (license limited to Lv2)
 - Clarification of legal responsibility and establishment of safety net
 - Creation of more acceptable (new) traffic rules
 - Clarification of the infrastructure and maintenance standards that will be needed
 - Analysis of the effect on driving vehicle-kilometers, congestion and environmental load (including analysis of changes to traffic management frameworks)
 - Study of flameworks, organizations and directions of international cooperation such as establishment of international standardization and specification
 - Study of low-cost and bare-bones automated driving systems in developing countries (development of new markets)


- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration

Conclusion

Proposals for the establishment of a framework for industry, academic and government collaboration

- Continuation and expansion of the study team
- Study of framework of all-Japan academic collaboration
- Creation of flameworks and organization for industry, academic and government collaboration

- Background to study
- Establishment of study team
- Evolution of automated driving systems
- Social and industrial impact on automated driving systems
- Proposed future study
- Proposals for the establishment of a framework for industry, academic and government collaboration
- Conclusion

Conclusion

- Study team centering on university specialists was established
- We proposed that automated driving systems will evolve at two levels (Lv2 and Lv4) and discussions of the impact on society and industry should focus primarily on Lv2 and Lv4
- Anticipated social impact was classified based on a two-way evolution and industrial impact was discussed
- Future study content for the next 2 3 years and midand long term was proposed
- The **establishment of a framework** for industry, academic and government collaboration was proposed

Thank you for your kind attention

