

1

A Perspective on V2X in the United States

John B. Kenney, Ph.D Director and Principal Researcher Toyota InfoTechnology Center, USA jkenney@us.toyota-itc.com

November 14, 2017 SIP-adus Workshop on Connected and Automated Driving Systems

Outline

- V2X Background
- V2X Applications
- V2X Deployment
- V2X Technical Challenges
- V2X Regulatory Challenges

Toyota InfoTechnology Center

Japan HQ

Owned by Toyota Motor Corporation

Headquarters: Akasaka, Tokyo, Japan

Established: January, 2001

TOYOTA

INFOTECHNOLOGY CENTER, U.S.A., INC.

US Center

Wholly-owned subsidiary of Toyota InfoTechnology Center Co., Ltd.

Base: Mountain View Research Park (US Headquarters)

Location: Mountain View, CA

Established: April, 2001

Additional Location: New York City, NY

Vehicular Network Hierarchy

This talk focuses on V2X: Cloud Vehicle-to-Vehicle Servers Data Center Vehicle-to-Infrastructure Vehicle-to Pedestrian Edge Vehicle-to-anything **Network** Edge Edge Edge Edge Server Server Server Server Vehicular **Network** Cellular Ρ Base Station Data **V2V 6**06 Road V2P V2I de Unit Data Data Sensor

V2V Safety Concept

- Concept: each vehicle sends <u>Basic Safety</u> <u>Messages</u> frequently in all directions.
- Receiving vehicles assess collision threats
- Threat: Warn driver or take control of car

CONNECTED VEHICLE APPLICATIONS

V2I Safety

Red Light Violation Warning Curve Speed Warning Stop Sign Gap Assist Spot Weather Impact Warning Reduced Speed/Work Zone Warning Pedestrian in Signalized Crosswalk Warning (Transit)

V2V Safety

Emergency Electronic Brake Lights (EEBL) Forward Collision Warning (FCW) Intersection Movement Assist (IMA) Left Turn Assist (LTA) Blind Spot/Lane Change Warning (BSW/LCW) Do Not Pass Warning (DNPW) Vehicle Turning Right in Front of Bus Warning (Transit)

Agency Data

Probe-based Pavement Maintenance Probe-enabled Traffic Monitoring Vehicle Classification-based Traffic Studies CV-enabled Turning Movement & Intersection Analysis CV-enabled Origin-Destination Studies Work Zone Traveler Information

Environment

Eco-Approach and Departure at Signalized Intersections Eco-Traffic Signal Timing Eco-Traffic Signal Priority Connected Eco-Driving Wireless Inductive/Resonance Charging **Eco-Lanes Management** Eco-Speed Harmonization Eco-Cooperative Adaptive Cruise Control Eco-Traveler Information Eco-Ramp Metering Low Emissions Zone Management AFV Charging / Fueling Information Eco-Smart Parking Dynamic Eco-Routing (light vehicle, transit, freight) Eco-ICM Decision Support System

Road Weather

Motorist Advisories and Warnings (MAW) Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information (WxTINFO)

Mobility

Advanced Traveler Information System Intelligent Traffic Signal System (I-SIG) Signal Priority (transit, freight) Mobile Accessible Pedestrian Signal System (PED-SIG) Emergency Vehicle Preemption (PREEMPT) Dynamic Speed Harmonization (SPD-HARM) Queue Warning (Q-WARN) Cooperative Adaptive Cruise Control (CACC) Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG) Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) **Emergency Communications and** Evacuation (EVAC) Connection Protection (T-CONNECT) Dynamic Transit Operations (T-DISP) Dynamic Ridesharing (D-RIDE) Freight-Specific Dynamic Travel Planning and Performance Drayage Optimization

Smart Roadside

Wireless Inspection Smart Truck Parking

Source US DOT

Most of these are V2I

Applying V2X to Automated Driving

Cooperative Automated Driving (CAD) with improved localization & mapping, perception, and path planning

CAD is an active research topic for Toyota ITC and others

Protocol Stack

TOYOTA InfoTechnology Center, U.S.A., Inc.

• Standards are necessary for interoperability • Standards are mature

See: J. Kenney, "DSRC Standards in the United States", Proc. IEEE, July 2011, Vol. 99, No. 7, pp. 1162-1182

US Deployment Situation

- NHTSA proposal to require DSRC in cars for V2V safety
 - Issued in January 2017

DEPARTICIPACION DE LA CONTRACISACIÓN DE LA CONTRACI

STATES OF AME

- Must send and receive Basic Safety Messages (BSMs)
- Most automakers support this BSM requirement
- Opposition from some Wi-Fi and Cellular stakeholders
- Possible timeline for mass deployment:

,	↑ /	N	1	\ /	<u>↑</u>	/	\uparrow	
	NHTSA considers rule	Automakers design		50% new cars	75% new cars	5	100% new cars	
20	17 20	19 2	202	21 20)22	20	023	

- Voluntary deployments have begun
 - Commercial: GM Cadillac (March 2017)
 - National: US DOT Pilot Deployments and Smart City
 - States: "SPaT Challenge" for 1000 intersection devices
 - Even if no NHTSA mandate, DSRC mass deployment will come

US Deployment continued

- US DSRC has 7 channels
- V2V Mandate (BSM) uses only 1 channel
- Many other DSRC applications will use other channels:
 - V2I safety
 - V2P safety
 - Traffic efficiency
 - Automated Driving
- Automakers may install 2-radio systems.
 - 2nd radio voluntary

TOYOTA

INFOTECHNOLOGY CENTER, U.S.A., INC.

Worldwide deployment

- <u>Japan</u>: ITS Connect technology
 - Toyota and other automakers, 760 MHz
- <u>Europe</u>: Cooperative ITS or ITS-G5
 - Volkswagen announced 2019 deployment
 - Car2Car Communications Consortium also aiming at 2019 deployment
 - Many trials
- Other countries actively exploring deployment
 - Korea, Australia, China, ...
- Strong Government-Industry partnership is key to successful deployment
- Voluntary deployment takes leadership and courage

Technical Challenges: Ad Hoc

- High vehicle mobility + Short range communication = Ad hoc communication
- There is no central base station or access point
 - The main innovation of 802.11p is removing the AP
- Implications:
 - Standards and voluntary agreements are critical for interoperability, especially lower layer protocols
 - Long vehicle lifetimes mean technology must remain stable for a long time.
 - Evolution is very different from Cellular or Wi-Fi models
 - Trust/security/privacy model is complicated

Basic question: will all this still work here?

Aspects of Scalability

Hard to address this

just with \$ or ¥

- Processing resources
 - Collision threat assessment
 - Per-message Security
- Security Infrastructure
- Wireless Channel resources
 - Toyota has created a channel congestion control algorithm called <u>LIMERIC</u> to adaptively control congestion
 - LIMERIC: A linear adaptive message rate algorithm for DSRC congestion control,
 G. Bansal, J. Kenney, C. Rohrs, IEEEE Trans. Veh. Tech., 2013

Regulatory Challenge: Sharing spectrum with Wi-Fi

- DSRC/C-ITS operates in licensed 5.9 GHz spectrum in the US
- Unlicensed devices (Wi-Fi, LTE-U) want access to more spectrum
 - Government regulators see economic growth advantages
- <u>Sharing</u> between licensed & unlicensed devices is new emphasis
 - Unlicensed must not cause "Harmful Interference" to licensed
 - Sharing with radar systems works, based on "detect & vacate"
 - But, sharing with short range V2V and V2I is quite different

US Federal Communications Commission (FCC) is investigating and testing if sharing 5.9 GHz spectrum can protect DSRC

- European Regulators/Industry recently completed a study of sharing
 - See ETSI TR 103 319
 - CEPT Preliminary View is for no sharing of ITS 5.9 GHz spectrum

Regulatory Challenge: Cellular V2X

- Auto industry in US/EU/JP decided 10+ years ago to use a variant of Wi-Fi protocol as basis for V2X: IEEE 802.11p
 - Simple, proven, effective for ad hoc, leverages billions of chips in deployment
- Since that decision, focus is on other, bigger challenges, like scalability, security, applications
- Cellular stakeholders are now pushing a new protocol: LTE V2X
 - First generation standard published by 3GPP this year
 - Many issues not yet resolved
 - No silicon available yet, no significant testing
 - It will be years before it can be deployed as a safety system
 - 5GAA is pushing for changes to regulations, could disrupt deployment plans
- In JP/EU/US deployment of 802.11p either ongoing or very soon
- Those regions should not delay deployment for an incomplete, immature, untested, unavailable technology.
 - Other regions that have not invested in 802.11p may choose LTE V2X (China)

Summary

- V2X is mature, deployment has started in US
- V2V safety is initial focus, but many <u>new</u> <u>applications</u> are coming
- <u>Cooperative Automated Driving</u> is an important emerging application
- Technical challenges include ad hoc communication and scalability
 - Good solutions exist for these
- Regulatory challenges include:
 - Spectrum sharing (big issue in US)
 - Protocol competition from cellular (big in EU)
 - These should not disrupt deployment