SIP-adus Workshop on Connected and Automated Driving System 2016

Prof. Yoshihiro SUDA

Director of Chiba Experiment Stations Director of Advanced Mobility Research Center (ITS Center) Institute of Industrial Science, The University of Tokyo

Sustainable Transportation

- Low Emission & Energy Saving
- Safety & Security
- Comfort & Healthy
- Anti- disaster & Emergency
- Social Changes for Aging Society

Connected and Automated driving for 2020 Tokyo Olympic & Paralympic

Ecosystem for automated driving

In the economic and IT society, companies and organizations are widely co-existence with harmony

Next Generation Transport Major discussion

- How to use automated vehicles for next generation transport: *Implementation of next generation and automated transport* strategies for the 2020 Tokyo Olympic / Paralympic Games (bus rapid transit, automated docking)
- Public transport: *Bus platooning, automation*
- Mobility providers and operators: private companies, public services, peer to peer and on-demand services, shared mobility
- Universal service, regional service: suburban areas, first- and lastmile service, rural service

Mobility as a Service and social change

The UNIVERSITY OF TOKYO

Public Transport

Transportation capacity depending on mode

- Passenger automobile including automated driving
 - Less than 1000 persons / hour
 - Point of issue: Less capacity and energy consumption
- Mass transit
 - More than 6000 persons / hour for subway, trains
 - 2000 persons / hour for buses and LRT
 - Point of issue: cost of initial construction and operation
- Personal mobility vehicle
 - Expected 2000 persons / hour
 - Speed and acceptance for elderly people
 - Point of issue: R&D is necessary

(Transportation capacity is converted into the unit of road or guideway width for the purpose of comparison between the modes)

THE UNIVERSITY OF TOKYO ## ELU # 1 # # E 2 9-

Automated Bus Operation for Social Acceptance

- Service by Mobility Provider
 - Regulation, insurance, maintenance, operation
- Flexible capacity
 - ART or BRT for urban transport
 - Small cabin for underpopulated areas
- The other merits
 - V2V and V2I
 - Advanced technology
 - Limited area and route for infrastructure

ART Advanced Rapid Transit

Updated from E-ITS

Outline of AS-MOBI (advanced smart Mobility Co. Ltd.,)

■AS-MOBI is new venture company established on June 2014 in Japan.

■The mission of AS-MOBI is to contribute to the implementation of automated vehicles in Japan as designer/planner.

- ■AS-MOBI achieves the mission in strong collaboration with the University of Tokyo and automotive industries.
- The core members of AS-MOBI are researchers related with automated truck platoon project by NEDO and IMTS by TOYOTA.

Soft Bank and AS-MOBI established SB Drive in April 2016

12

Smart Mobility **SB** Drive

Concluding Remarks

- Consideration of Ecosystem is important for next generation transport.
- Automated Bus Service is best possible solution for the elderly and persons with reduced mobility, or for those living in underpopulated areas.
- Efforts for ecosystem just started with business people, universities and governments in Japan as SIP-adus.

