

## **Connected and Automated Driving Requirements for digital infrastructure**

**3rd SIP-adus Workshop on Connected and Automated Driving Systems 2016** 

Dr. Frank Foersterling

Continental



## **Automated Driving**

## Close the Loop Between Driver, Vehicle & Environment





3<sup>rd</sup> SIP-adus Workshop Public

## Visual Range 300m Is this Really Enough?





3<sup>rd</sup> SIP-adus Workshop Public

## **Environment Detection**

Digital Onboard Maps:Provide Information Beyond the Line of Sight – eHorizon



## 🙆 ntinental 🏂

3<sup>rd</sup> SIP-adus Workshop Public

## Next Step:Digital Maps and Online Data Provide real-time Information – dynamic eHorizon





3<sup>rd</sup> SIP-adus Workshop Public

## **Tomorrow's Situation: Sensors, Maps and Online Data** The Vehicle Looks beyond 300m and Around the Corner



### 🙆 ntinental 🏂

## Automated Driving: "Fresh Data" from the Cloud Highly Precise Map and Dynamic Data – Crowd Sourced



**Dynamic Services (Reference List) - based on Traffic Management Information** 



## 🙆 ntinental 🏂

## **Digital Infrastructure Requirements for AD** Provision of up-to-date digital map

#### Key feature: Cloud based digital map – always up-to-date and precise

#### Always up-to-date

- > tile based approach
- > learning map (e.g. gantries)
- > versioning
- Predictive tile download to the vehicle (based on eHorizon MPP)

#### precise

- > lane accurate information
- > precise map matching (lane specific)

#### CHALLENGE: HD Road Model

- > What kind of information?  $\rightarrow$  landmarks, lane info, what else?
- > how to get initial model
- > how to run updates / maintenance
- how to ensure self localization and precise positioning?





## 🔞 ntinental 🏂

## Digital Infrastructure Requirements for AD Support of Landmark concept

#### Key feature: precise landmarks along the highway

#### **Absolute Positioning**

- based on GNNS technology
- > in addition with correction mechanisms

#### **Relative Positioning**

- via landmarks
- > via Camera based solutions (option: radar based)





#### CHALLENGE: Life cycle

Update mechanism of landmarks



## **Digital Infrastructure Requirements for AD**

Provision of up-to-date dynamic events / traffic information

## Key feature: infrastructure based environmental prediction beyond the local vehicle sensors

#### Support of speed adjustment:

- Incident prediction (jam, dangerous objects, dangerous weather, ...)
- > Predictive information about speed limits

#### Support of lane changing strategy

- Prediction of closed lanes
- > Prediction of no-passing areas

#### Support to evaluate the road features

 Recommendation of AD release (Road/Link Blacklist)

#### Support of controlled vehicle stop



## 🗿 ntinental 🏂

## **Digital Infrastructure Requirements for AD**

Provision of up-to-date dynamic events / traffic information

Stepwise deployment of AD vehicles require dedicated data fusion strategy





## **Digital Infrastructure Requirements for AD** Data Usage Categories

#### Position of VDA Germany (communicated to EC)

| Category 1                                                  | Category 2                                                               | Category 3a                                                | Category 3b                                                                | Category 4                                                                                                        |
|-------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Data for improved<br>traffic safety                         | Data for cross brand services                                            | Data for brand specific services                           | Data for component<br>analysis and product<br>improvement                  | Personal data                                                                                                     |
| Traffic safety relevant data                                | None<br>differentiating<br>vehicle data                                  | Vehicle data<br>differentiating and IP<br>relevant for OEM | Vehicle data<br>differentiating and IP<br>relevant for OEM and<br>supplier | "Right of access "<br>granted only to the<br>parties authorized to<br>process data by law,<br>contract or consent |
| Data for e.g. public<br>traffic management<br>institutions. | Non-discriminatory<br>data access to third<br>parties. <sup>#2, #3</sup> | OEM or<br>Partner on OEMs<br>behalf                        | OEM or<br>Partner on OEMs<br>behalf                                        | Customer selected partner                                                                                         |
| Fire Department,<br>Police, 911,                            | Product                                                                  | Dealer, Subsidiary                                         | Product                                                                    | Customer                                                                                                          |

The customer <sup>#1</sup> will be informed of data usage and OEMs will provide the customer with decision options which the customer can reverse at any time, unless the function is required by law



## **Digital Infrastructure Requirements for AD**

Support of Functional Safety Requirements Five map safety aspects have to be considered

| ,                                             | Question                                                                             | Possible Measure                        |
|-----------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|
| 1) Content                                    | Is the <b>map content quality</b> as good as indicated in the metadata?              | Map content quality assessment          |
| 2) Provision                                  | Can we rely on the <b>map</b><br>provider?                                           | Map provider audit                      |
| <b>3) Transmission</b>                        | Was the <b>data transmitted</b><br>without falsification of map data<br>or metadata? | End-to-end checksum                     |
| $4$ ) Interpretation $\stackrel{\vee}{\succ}$ | How correct, precise and up-to-<br>date is the received data set?                    | Map quality metadata                    |
| 5) Processing                                 | Does the <b>automotive E/E system</b><br>work according to the<br>specification?     | Functional safety audit /<br>assessment |

🔞 ntinental 🏂

## **Digital Infrastructure Requirements for AD** Reliable hybrid telecommincations infrastructure

ITS G5 Communication Direct vehicle to vehicle

ITS G5 Communication Short Range

Vehicle-to-vehicle is about proximity, path prediction and collision anticipation/warning:

- Intersection & Lane Change
- Rear end







Vehicle-to-infrastructure is about broader road conditions:

- Incidents
- Alerts

V2X via location-cast is about Electronic Horizon far ahead of the vehicle:

- · Weather/road/traffic conditions
- Incidents





## **Digital Infrastructure Requirements for AD** Reliable hybrid telecommincations infrastructure





## Collaboration – Way Forward Auto and Telco industries – Common Development of Product and Businesses



#### European Alliance between Telecom & Automotive to promote the wider deployment of connected & automated driving



## **Digital Infrastructure Requirements for AD**

## Security & Privacy Attack Vector What can be attacked by hackers? Map (Traffic Data (SNSS Cor.

|   | - 1 |    |   |   |
|---|-----|----|---|---|
| V | P   | nı | C | P |
|   |     |    |   |   |

 Position, Lane Information, GNSS Speed, Road Slope, Road Curvature, AD Status etc.

#### Connection

> LTE, GSM

> V2X

#### Backend

 HD Map Data, Dynamic Traffic Data, GNSS Correction Data



## **Digital Infrastructure Requirements for AD** Follow Standardization



## Navigation Data Standard PSF Physical Storage Format



# SENSORÍS



3<sup>rd</sup> SIP-adus Workshop Public

## **Open AutoDrive Forum (OADF) Reference Architecture**



🙆 ntinental 🏂

## The Change has been Started Automated Driving in Evolutionary Steps



## 🙆 ntinental 🏂

## Thank you!





Space for Sender Information Confidential