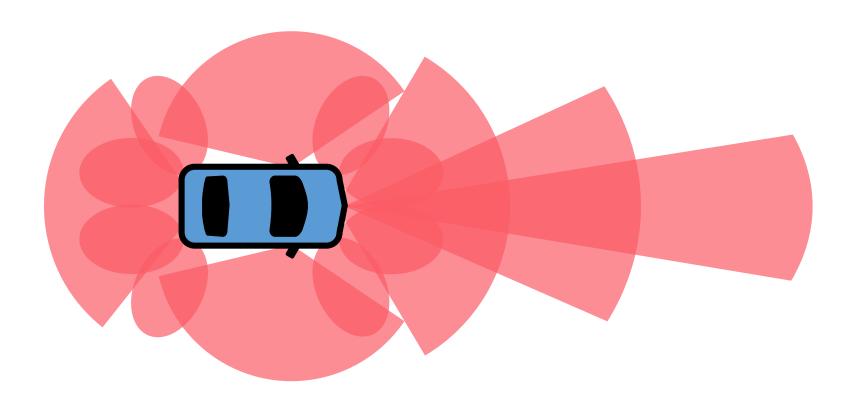


OPEN AUTO DRIVE FORUM A NEW COOPERATION APPROACH FOR AN AUTOMATED DRIVING ECOSYSTEM

SIS66

SESSION OVERVIEW

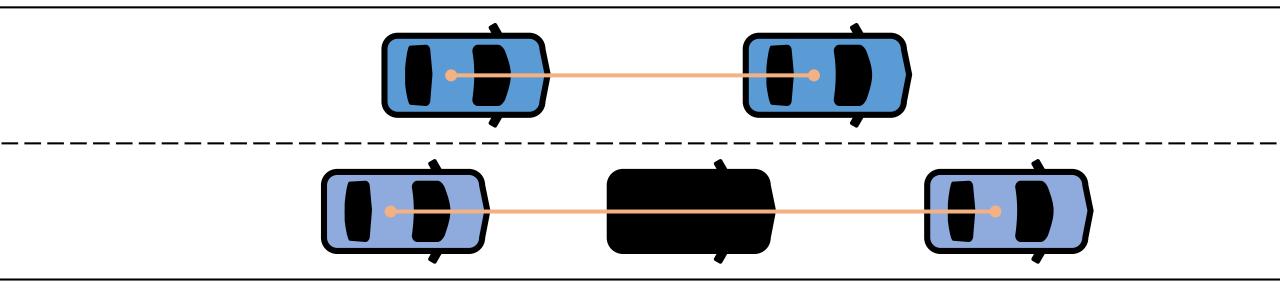


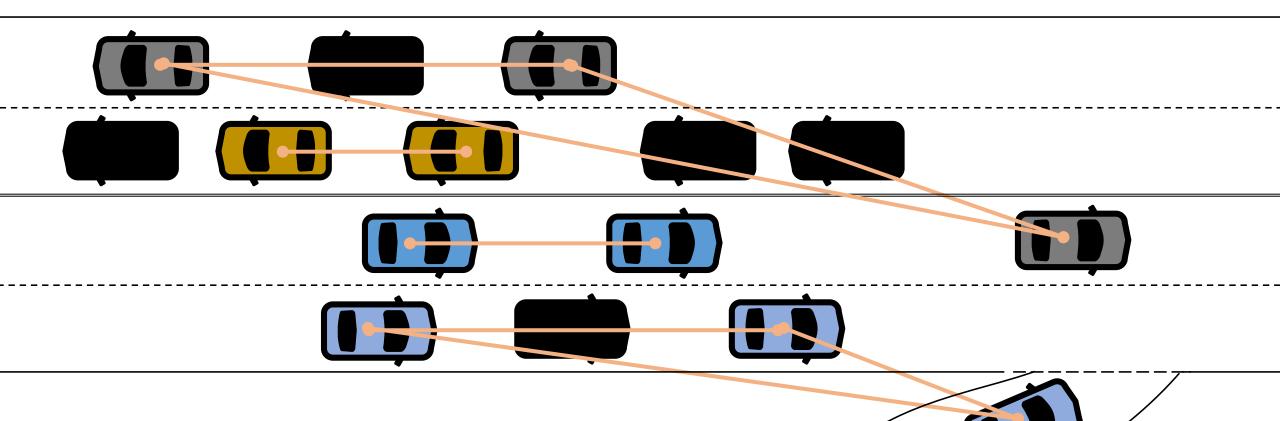
- Introduction
 - "AD Data-Exchange Challenge"
 - Questions for the Day
- OADF Activity Overviews
- Key Technical Challenges
- The Hard Part: Adoption and Evolution

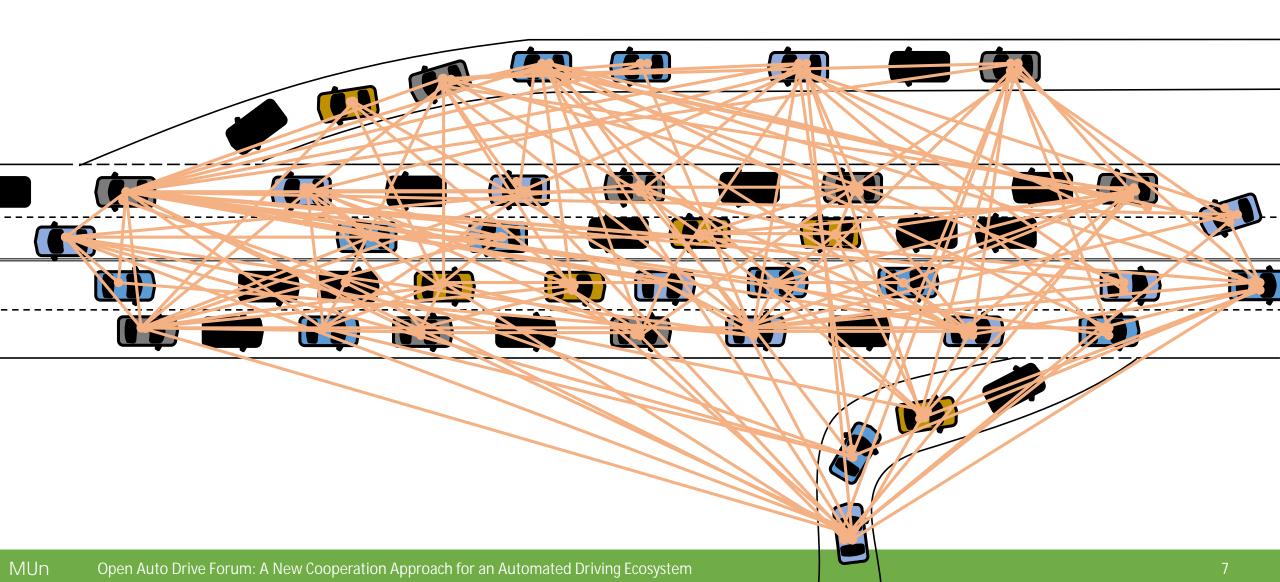
This is a CONVERSATION, not just a PRESENTATION!

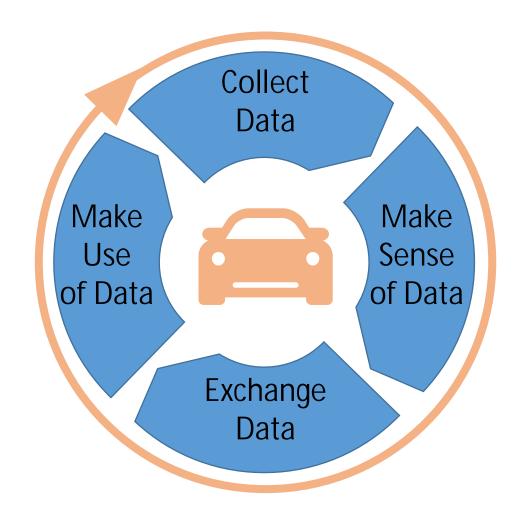
AUTOMATED DRIVING NEEDS SENSOR DATA

AUTOMATED DRIVING NEEDS SHARED DATA




AUTOMATED DRIVING NEEDS SHARED DATA ... AND CONNECTIVITY


AUTOMATED DRIVING NEEDS SHARED DATA AND CONNECTIVITY


AUTOMATED DRIVING NEEDS SHARED DATA AND CONNECTIVITY

AUTOMATED DRIVING DATA FEEDBACK LOOP

Implementing the Automated Driving Data Feedback Loop requires a common Ecosystem for establishing the required Digital Infrastructure

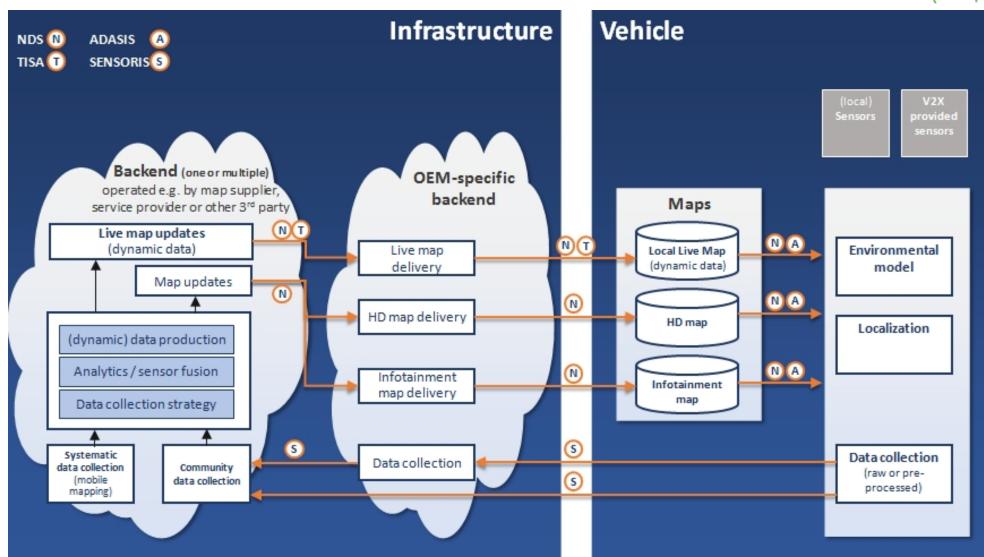
QUESTIONS FOR THE DAY

- A. How do we develop standards in this space?
- B. Which standards are required?

C. How will we get them adopted?

INTRODUCTIONS

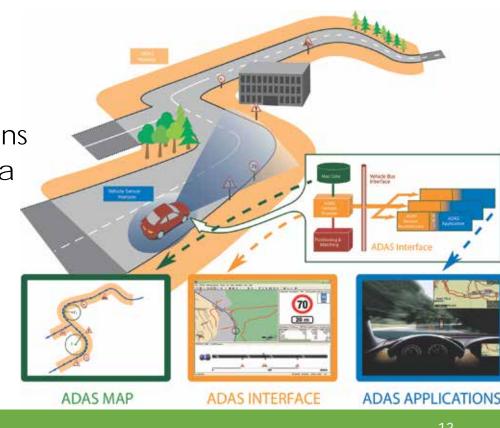
- Jean-Charles Pandazis, Head of Dept, ERTICO (ADASIS)
- Martin Schleicher, Chairman, NDS
- Prokop Jehlicka, Chairman, SENSORIS
- Matthias Unbehaun, Executive Director, TISA
- Satoru Nakajo, Founding Member, SIP-adus; ISO TC204



OPEN AUTO DRIVE FORUM ACTIVITY OVERVIEW

SIS66

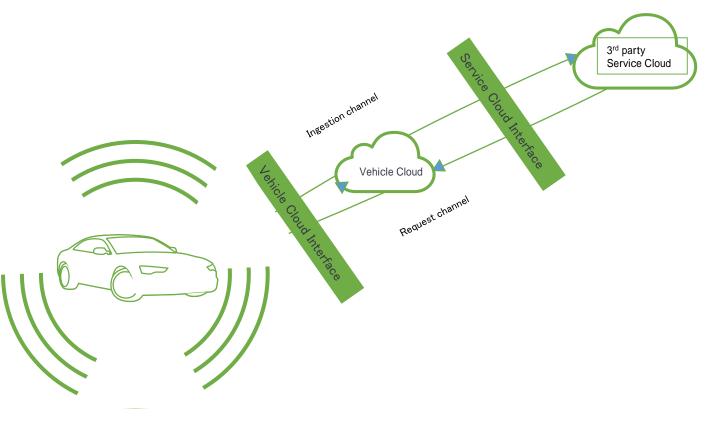
AUTOMATED DRIVING ECOSYSTEM



- Constituted 2002 by ERTICO industrial partners
- In 2012 ADASISv2 enabled first predictive applications on the road
- Since 2018 is a Non-Profit Association (55 members)
- In 2018 ADASISv3 is released to enable Automated Driving by
 - Supporting HAD maps (NDS)
 - Supporting long range horizon without restrictions
 - Update & erasure mechanism for dynamic data
- Reference implementation is available for ADASIS members only

ADASIS horizon addresses all major future mobility trends: connected, electrified and automated

THE worldwide standard for map data in automotive eco-systems


- Specification defined by members of the NDS Association
 - OEMs
 - System Vendors
 - Solution Providers
 - Navigation Data Providers

- NDS members work together on
 - Map Format Specification
 - Cloud Integration
 - Automated Driving
 - Next Generation Architecture & Update Interfaces

SENSORIS

- Constituted 2016 (now 30 members)
- Flexible usage in focus
 - Use Case agnostic
 - Fixed Interpretation
 - Flexible Representation
- SENSORIS v1.0.0 released
 - Vehicle Data
 - Driving Behavior
 - Road Data
 - Traffic Information

TRAVELLER INFORMATION SERVICES ASSOCIATION

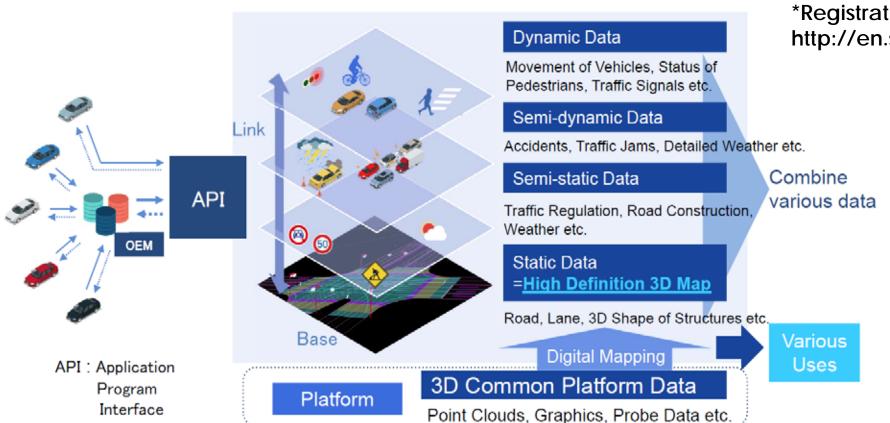
 Global membership (100), covering the entire value chain

TPEG2 toolbox is THE global standard

for traffic information

private road operators

(A)


SIP-adus

Quality of life

- PnP project in Japan. Started in FY2014 and will continue till FY2022.
- Had provided over 700km static data to FOT participants in 2017.
- Will report the result of the FOT at SIP-adus WS in Tokyo, 13-15 Nov. 2018.

*Registration is needed http://en.sip-adus.go.jp/evt/workshop2018/

Basic features supplied by SIP adus

- * Road shoulder
- * Center line
- * Lane line
- * Lane edge
- * Stop line
- * Pedestrian crossing
- Road marking
- * Traffic signal
- * Road sign

- * Carriageway link
- * Lane link
- * Intersection lane link
- * Area-formed intersection
- * CRP node

14 features

OPEN AUTO DRIVE FORUM (OADF)

Cross-domain discussion The interface specification platform driving standardizations for vehicle sensor data. in the area of automated driving www.sensor-is.org **SENSORIS** Traffic and travel information The data exchange services and products based on interface to support TISA RDS-TMC and TPEG[™]. **Advanced Driver ADASIS OPEN AUTO DRIVE Assistance Systems** www.tisa.org **FORUM** (ADAS) applications. www.adasis.org Develops ITS as cross-ministerial SIP-adus collaboration, working on AD **NDS** The worldwide standard for map system implementation in Japan data in automotive eco-systems. and next-gen urban transport. www.nds-association.org http://en.sip-adus.go.jp Open DRIVE

OPEN AUTODRIVE FORUM (OADF)

- Founded by NDS and ADASIS in November 2015
 - SENSORIS and TISA joined shortly after
 - Collaboration with SIP-adus, OpenDRIVE, TN-ITS and ISO
- Objectives
 - ... a platform to present the latest developments ...
 - ... discussion platform for cross-domain topics ... in AD ...
 - Generate ... input for standardization ...
 - Connect ... authorities and ... industry ...
- Mission is to ... develop ... solutions for AD, which ... work in the reference ecosystem

QUESTIONS FOR THE DAY

A. How do we develop standards in this space?

- Stakeholder issues?
- Organizational issues?
- Technical issues?
- B. Which standards are required?
- C. How will we get them adopted?

OPEN AUTO DRIVE FORUM KEY TECHNICAL CHALLENGES

SIS66

OPEN AUTODRIVE FORUM (OADF) CHALLENGES

- OADF Ecosystem: relational and functional view
- Delivery of dynamic data:
 - Location referencing
 - Lane modeling
- Directory of attributes across individual standards for facilitating interfaces
- Highly Reliable Maps:
 - Map Backend Integrity
 - Map Quality Attributes

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF NDS – TISA COLLABORATION ON HARMONIZED LOCATION REFERENCING

Navigation Data Standard

Motivation

• Embedding proven solutions and crossreferencing existing standards instead of 're-inventing the wheel'

Solution

 Replacing universal & flexible on-the-fly location referencing (TPEG) in the message container by a map- & OEM-specific, but efficient NDS reference

Transfer only NDS Map Transfer ence to car Transfer ence to car

Benefits

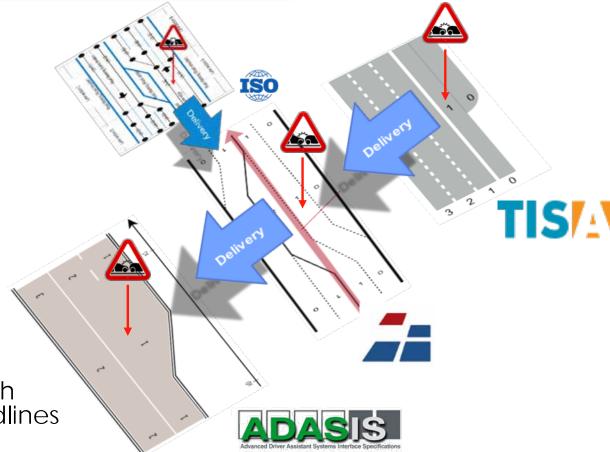
- Maintain flexibility (TPEG) and efficiency (NDS) while addressing a wider range of use cases
- Both solutions (TPEG & NDS) are established in the automotive industry, coding bestpractices and testing/validation solutions already exist

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF NDS - TISA - ADASIS COLLABORATION ON HARMONIZED LANE REFERENCING

Motivation

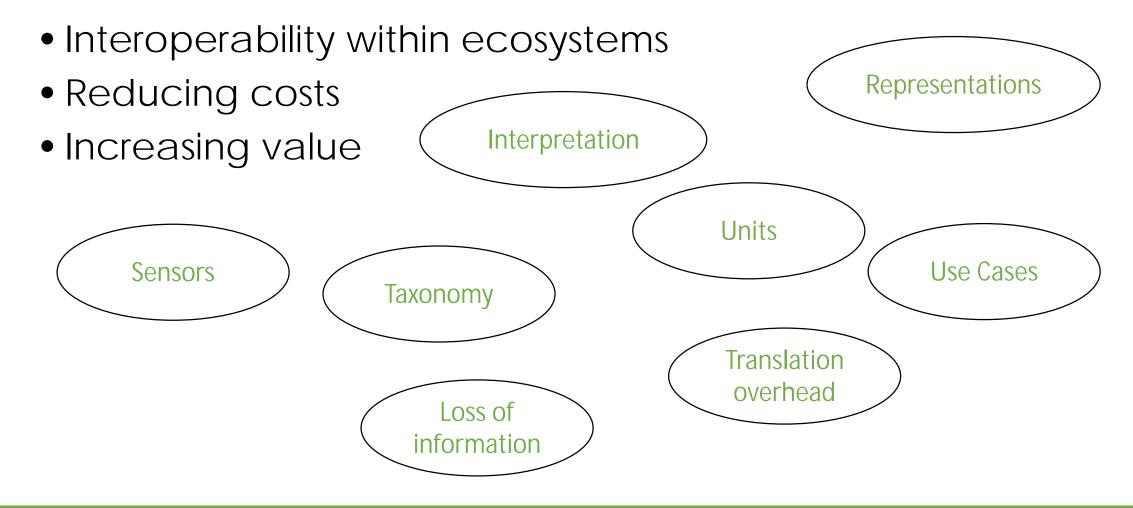
Reduce complexity of translation (cross-compilation) between standards by providing a harmonized lane enumeration

Solution

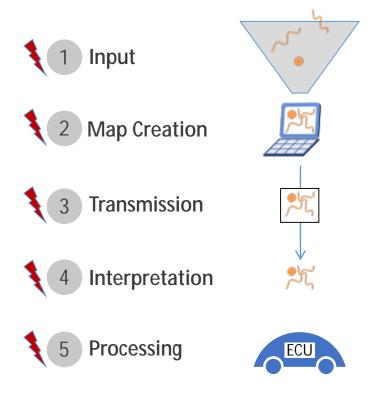

Alignment of work in progress and/or future revisions/updates of existing standards

Benefit

Lowering threshold for adoption because 'everything fits well together'


Drawback

Alignment effort between groups working with different standardization processes and deadlines

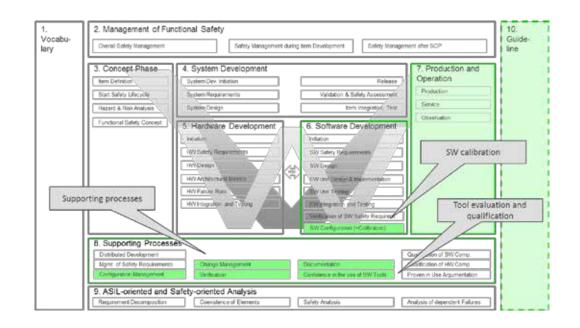

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF SENSORIS – NDS COLLABORATION ON OPEN ATTRIBUTE METADATA CATALOGUE

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF HIGHLY RELIABLE MAPS

Question	Measure	Status
How correct, precise and up-to-date is the input data used for the map creation?	Map input metadata	Open
How reliable is the map creation process?	Mab backend integrity level	Concrete approach in discussion
Was the data transmission correct?	End-to-end protection	Agreed: Security measures (encryption)
How correct, precise and up-to-date is the received map data?	Map output metadata	Two different approaches exist (TomTom & Here)
Does the automotive E/E system work according to the specification?	ASIL	State of the art
		Open: ASIL necessary for data acquisition?

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF MAP BACKEND INTEGRITY (MBIL)

ISO 26262 may be fulfilled by seeing the backend as a tool


Approach: Treat map backend like a Tool Chain

General

- Map data download by vehicle can be seen as "continuous" calibration (during drive cycle)
- Differs from ISO 26262, which assumes infrequent update of calibration data (during production/maintenance)

Ongoing work:

Analysis of possibly applicable requirements from ISO 26262 for the map backend

CROSS-ORGANIZATIONAL TOPICS ADDRESSED IN OADF MAP QUALITY ATTRIBUTES

Data quality aspects

- 1. Completeness (Commission, Omission)
- Logical Consistency (Conceptual consistency, domain consistency, format consistency, topological consistency)
- 3. Positional Accuracy (Absolute or external accuracy, Gridded data position accuracy)
- Temporal Accuracy (Accuracy of a time measurement, Temporal consistency, Temporal validity)
- Thematic Accuracy (Classification correctness, Non-quantitative attribute correctness, Quantitative attribute accuracy)
- 6. Aggregation Measures

For each of the above aspects, ISO 19157 defines a set of measures that can be applied to evaluate data quality.

QUESTIONS FOR THE DAY

A. How do we develop standards in this space?

B. Which standards are required?

- Right priorities?
- Anything missing?

C. How will we get them adopted?

THE HARD PART

IT'S PUBLISHED, WE'RE DONE...

Models/Dictionaries/Registries

- ISO 20524 Geographic Data Files (GDF)
- CEN TN-ITS
- Navigation Data Standard (incl. Open Lane Model)
- OpenDRIVE 1.4
- ADASIS 3.0
- ISO 14296:2016 Extension of map database specifications
- ISO TR 21718 Spatio-temporal data dictionary
- SAE J2945/10 Recommended Practices for MAP/SPaT Message Development
- CEN METR
- ISO/TS 19321:2015 IVI Data Dictionary
- ISO/TS 17425:2016 Data exchange specification for in-vehicle presentation of external road and traffic related data
- ISO 21219 TPEG 2
- ISO 18750:2018: Local dynamic map
- CEN 16157-3 DATEX II Situation Publication
- ETSI EN 302 637-3 V1.2.1 DENM
- ISO/TS 19091:2017 Using V2I and I2V for signalized intersections
- SAE J2735™
- ITE TMDD
- IEEE 1512
- TISA TPEG 3.0
- J2945/4: DSRC Messages for TIM and BIM (RSM)
- ISO 20078 Extended vehicle content
- FHWA WZDX
- ISO 17419 Globally unique identification; *Management and operation of registries*

Terminology

- ISO 14812 Vocabulary
- SAE J3131 AD Reference Architecture

Location Referencing

- ISO 17572-1:2015 Location referencing for geographic databases
- ISO 21219 TPEG2 Parts 11, 20-22
- OpenLR v1.4.2
- CEN EN 16157-2 DATEX II Part 2: Location referencing
- OpenGIS® Location Services (OpenLS)
- J2266™: LRMS
- CEN Location Referencing Harmonization for Urban-ITS

Quality

- ISO 19157:2013, 2016 Geographic Information Data quality
- ISO 19158:2012 Geographic Information Quality assurance of data supply
- OADF Highly Reliable Maps specifications

Italic = in draft

Figure is In-Progress Material from FHWA Infrastructure and V2X Mapping Needs Assessment and Development project

QUESTIONS FOR THE DAY

- A. How do we develop standards in this space?
- B. Which standards are required?

C. How will we get them adopted?

- Awareness
- Selection
- Correct implementation
- Evolution

QUESTIONS OR SUGGESTIONS?

CONTACTS

Michael Klingsoehr michael.klingsoehr@bosch-softtec.com

Martin Schleicher martin.schleicher@elektrobit.com

Satoru Nakajo snakajo@csis.u-tokyo.ac.jp

Matthias Unbehaun m.unbehaun@tisa.org